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This paper reports experimental findings on the flow of sand down a steep chute. Nearly
all granular flow models have a maximum value for the friction and therefore predict
that flows on steep slopes will accelerate at a constant rate until the interaction with the
ambient fluid becomes important. This prediction has not been tested by previous work,
which has focused on relatively low slope angles where steady, fully developed flows occur
after short distances. We test this by investigating flows over a much greater range of
slope angles (30–50◦) and flow depths (4–130 particle diameters). We examine flows with
two basal conditions, one flat and frictional, the other bumpy. The latter imposes a no-slip
condition for slow, deep flows, but permits some degree of slip for high flow velocities. The
data suggests that friction can be much larger than theories such as the µ(I) rheology
proposed in Jop et al. (2006) suggest and that there may be constant velocity states
above the angle of vanishing hstop. Though these flows do not vary in time, all but the
flows on the bumpy base at low inclinations accelerate down the slope. A recirculation
mechanism sustains flows with a maximum mass flux of 20 kg s−1, allowing observations
to be made at multiple points for each flow for an indefinite period. Flows with Froude
number in the range 0.1–25 and bulk inertial number 0.1–2.7 were observed in the dense
regime, with surface velocities in the range 0.2–5.6m s−1. Previous studies have focused
on I / 0.5. We show that a numerical implementation of the µ(I) rheology, does not
fully capture the accelerating dynamics or the transverse velocity profile on the bumpy
base. We also observe the transverse separation of the flow into a dense core flanked by
dilute regions and the formation of longitudinal vortices.

1. Introduction

Dense granular flows occur frequently in both nature and industry, yet, despite their
prevalence, they remain poorly understood. The lack of a generally applicable constitu-
tive relation means that a theory encapsulating their dynamics for all situations remains
illusive. Depending on the local conditions, granular materials can behave as a solid,
liquid or gas. As the size of the grains and the length scales of the flow are of the same
order of magnitude, there is a lack of separation of scales. This, along with the absence
of thermodynamic equilibrium, means that a traditional continuum approximation ap-
proach such as the Navier-Stokes equation for Newtonian fluids, has limited utility when
trying to capture the diverse range of behaviours.
At one extreme, for flows under slow and small deformation, soil mechanics can give

good predictions (Jackson 1983). For very energetic, dilute flows, where the dynamics are
dominated by uncorrelated, binary collisions, modified kinetic theory makes good quan-
titative predictions (Goldhirsch 2003; Jenkins & Richman 1985; Mitarai & Nakanishi
2005) and some theories attempt to include correlations (Jenkins & Berzi 2010). Be-
tween these two extremes lies a flowing regime where the volume fraction φ > 0.5 and
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friction, collisions and force chains each play an important role in the dynamics. While
this regime has received a large amount of theoretical attention, the validity of models
and observations is restricted to a small number of experiments, with little variation in
the control parameters.

The simple geometry of the inclined chute not only provides a good basis for studying
natural gravity flows such as debris flows and avalanches, but is directly relevant to indus-
trial transport contexts. As a result it has formed the basis of many experimental studies
e.g. Ahn et al. (1991, 1992); Patton et al. (1987); Louge & Keast (2001); Delannay et al.

(2007) over a variety of surface conditions. These studies focus on fully developed flows
where all quantities are constant in time and where there is no flow development down
the slope. The behaviour of these flows is captured by the flow rule

Fr = −γ + β
h

hstop(θ)
(1.1)

for material constants γ and β (Pouliquen 1999). We define the bulk Froude number as

Fr =
us√

gh cos θ
. (1.2)

Where us is the average surface velocity, g the acceleration due to gravity and h the flow
thickness. Alternative definitions of Fr exist in the literature where the depth and width
averaged velocity ū is used instead of us, however, only the surface velocity is known in
our experiments so it is convenient to use this definition. The height hstop(θ) is the depth
of the deposit left after a flow on a plane at an inclination θ has arrested and depends
both on the material and the basal conditions. The minimum angle for which hstop = 0 is
denoted by θ2 and determining its value is equivalent to specifying the maximal frictional
resistance of the material under shearing for flows obeying equation (1.1). For inclinations
above θ2 we have hstop = 0 and the µ(I) model predicts that the material accelerates
indefinitely.

In order to track the development of accelerating flows on inclinations greater than θ2,
multiple measurements must be made along the chute. In our experimental set-up, the
problem of maintaining a flow for a sufficiently long time to achieve this has been solved
by using a recirculation system. After initiation, the flow rapidly becomes steady in time,
but accelerates down the slope. Along with the Froude number, Fr, and the inclination
θ, the flow is characterised by its non-dimensional height n = h/d, which measured the
flow height in particle diameters and is controlled indirectly by changing the mass flux.

We investigate accelerating flows using two different bases: one bumpy, which usually
imposes a no-slip boundary condition, and a flat, frictional base which permits slip. The
two control parameters in the experiment are the mass flux, q, and the inclination of the
chute, θ. Varying these determines the velocity and height of the flow down the chute.
Height and velocity can then be used to calculate the total effective friction coefficient µ,
which can then be compared to predictions using the µ(I) rheology of Jop et al. (2006)
described below. The flows presented here are all contained by flat walls. Despite this,
the transverse velocity profiles vary considerably between the different basal conditions,
indicating a complex boundary interaction.

The µ(I) rheology which provides good agreement with a number of experiments at
small inclinations (see MiDi 2004), equates the shear stress and the pressure using a
phenomenological expression for the internal friction coefficient

µi(I) =
µ1I0 + µ2I

I0 + I
(1.3)
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We have adopted the subscript i to distinguish the friction in a continuum model from
the total friction µ which refers to dynamics of a slice of material averaged across the
width and depth of the chute. In equation 1.3 µ1 is the lower limit for the material’s
frictional resistance attained for vanishing I and µ2 = tan θ2 is the maximum attained
in the limit as I → ∞. I0 sets the scale over which µi changes and is usually taken to
be constant and a function of the material properties. However, Jop et al. (2005) shows
that it has a non-trivial, albeit weak dependence on the inclination of the flow over the
range studied. The inertial number I, which is the square root of the Savage number
(Savage (1984)), or the Coulomb number (Ancey et al. 1999), is defined as the ratio of
the microscopic d/

√

P/ρ and macroscopic 1/ |γ̇ij | deformation timescales and is given by

I =
|γ̇ij | d
√

P/ρ
, (1.4)

where |γ̇ij | is the absolute value of the local shear rate, d is the particle diameter, P
is the particle pressure and ρ is the density of a single particle. Other slightly different
definitions are sometimes used that incorporate the packing fraction. The value of the
inertial number gives some indication of the nature of the flow: for high values of I,
the flow is highly energised, dilute and in the collisional regime and for small I, the
deformation is slow and quasi-static. We consider I ≈ 0.5 as marking a transition to
high-speed flows, but there is no discontinuous change in flow regime. The dense fluid
regime investigated in this paper lies between these two extremes. We can use typical
values for the local shear rate |γ̇ij | = us/h and the basal pressure P = ρgh cos θ to define
the bulk inertial parameter as

Ib =
usd

√

gh3 cos θ
=

Fr

n
. (1.5)

In our experiments Ib is in the range 0.1 < Ib < 2.7 throughout which the flow remains
in the dense regime. The upper limit of this range is much larger than in previous studies
which have typically focused on the range Ib < 0.5 (MiDi 2004; Forterre & Pouliquen
2008).
In section 2 we set out the theoretical framework for describing these results. In sec-

tion 3 we describe the experimental procedure and measurement techniques. Section 4
details our experimental findings. A numerical implementation of the µ(I) rheology is
described in section 5, and the comparison with the experimental results is discussed in
section 6.

2. Governing Equations

The depth integrated equations of motion, or Saint-Venant equations (Savage & Hutter
1989), provide a means of defining a macroscopic friction coefficient, or total friction, µ
which measures the overall retardation of a slice of granular fluid due to the frictional
forces exerted on the material by the boundaries. This stress is then transmitted through
the material according to its rheology. We start by defining the mass flux, which is given
by

q = ρwφ̄uh. (2.1)

Here ū is the mass averaged velocity at a position x down the slope, h is the flow
height, which is assumed to be only a function of x, w is the chute width, ρ is the
density of a particle and φ is the volume fraction. Previous studies (Louge & Keast
2001) have used non-invasive measurement techniques to show that φ is approximately



4 A. J. Holyoake and J. N. McElwaine

constant and this is in agreement with DEM simulations (Silbert et al. 2001), with the
approximation improving for thicker flows. We can therefore assume incompressibility
(that is φ = const.) to write the depth-integrated conservation of mass as

∂h

∂t
+

∂hū

∂x
= 0. (2.2)

For a steady flow we have ∂t = 0, and therefore q is constant down the slope. Similarly,
the x-component of the integrated conservation of momentum gives

ρ
s2
s21

∂
(

hū2
)

∂x
+

∂

∂x

(

1

2
g cos θh2

)

= gh sin θ − hF, (2.3)

where the hydrostatic pressure P = ρgz cos θ is taken from the vertical (z) component
and substituted into the horizontal component and the sn are defined below. Here, we
have assumed that the velocity is solely in the down-slope direction. We have chosen
z = 0 to correspond to the free surface. We write the x-velocity, u, as the average surface
velocity us multiplied by a function to give the full width y and depth z dependence:

u = us f(y/w, z/h). (2.4)

We define the sn as the average value of fn

sn =
1

wh

∫ ∫

fn dy dz. (2.5)

In this representation, f takes a value of 1 at a point on the surface. Since the flows are
presumed to be symmetric and the walls exert resistive forces, we expect this to occur
in the middle and therefore f(1/2, 0) = 1 with f < 1 at the walls. A flow with a no-slip
basal condition gives f(y/w, 1) = 0, a flow with Bagnold depth dependence has f ∼ z3/2,
and a plug flow has f(y/w, z/h) = 1. The first term on the right-hand side of equation
(2.3) represents the gravitational forcing, while the second one, F , is the resistance of the
material to flowing. The latter is dependent upon both the rheology and the interaction
of the flow with the boundaries. We can eliminate derivatives of h in (2.3) using equation
(2.2). Also using the relationship ū = s1us, we obtain

(

s2 −
1

Fr2

)

us

dus

dx
= g sin θ − F. (2.6)

This demonstrates the change between subcritical and supercritical flow according to
whether

√
s2Fr is less than or greater than one. Using the divergence theorem, F can be

written in terms of the stress tensor at the boundaries of the flow

hwρF =

∫ h

0

∫ w

0

∂σxx

∂x
dy dz + 2

∫ h

0

σxy|y=w dz +

∫ w

0

σxz|z=h dy. (2.7)

The above expression assumes a symmetric flow about the centreline and no-stress con-
dition at the free surface. The total friction, µ, is then defined as

µ =
F

g cos θ
. (2.8)

Assuming f(y, z) is everywhere positive (that is no return flow) then 0 < sn < 1. For
example, a plug flow has s1 = s2 = 1, while for linear shear we find s1 = 1

2
, s2 = 1

3

and for a Bagnold profile s1 = 3
5
, s2 = 9

20
. In this derivation we have assumed that the

lateral earth pressure coefficient is 1 (that is the horizontal and vertical normal stresses
are equal) in accordance with the findings of Ertaş et al. (2001).
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In steady, fully-developed flows, the acceleration is by definition 0, and µ = tan θ.
The factor s2 −Fr−2 multiplying the advective acceleration in equation (2.6) gives some

indication of the range of validity of the assumption of time-steady flow. For Fr > s
−1/2
2 ,

the downslope coordinate, x, behaves as a modified time coordinate and the flows are
super-critical, with the upstream conditions left unaffected by downstream conditions.

When Fr < s
−1/2
2 , the flow is sub-critical and the flow is determined by the down stream

conditions. In both cases the existence of a time-steady state, and hence validity of
equation (2.6) will depend on the boundary conditions.

3. Experimental Method

Our flows are generated by the equipment shown in figures 1 and 2. A crucial feature
of the apparatus is the recirculation mechanism. The recirculation process starts with
roughly 2000 kg of sand at rest in the collection hopper (A). This is fed to a screw conveyor
(B) which when operating at its maximum capacity can move 22 kg s−1 of material to
the bucket conveyor (C). This lifts the material 6m vertically to the feed hopper (D).
The feed hopper contains an overflow pipe (G) that ensures a constant head of sand is
maintained. This is necessary to ensure a constant flow rate since our hopper is too small
for the exit conditions to be governed by the Janssen effect (Janssen 1895). The exit of
the hopper consists of a rectangular aperture of width 225mm and of variable length
which is controlled by a screw attached to a pulley. The angular position of the screw
is given by a digital rotary encoder with one degree of rotation equivalent to 0.0139mm
of linear travel, giving very fine control over the aperture geometry. The aperture length
can be anywhere from fully closed to 225mm at its maximum. The sand falls freely from
the aperture onto the chute (E) so that the conditions inside the chute do not affect
the mass flow rate. The chute is mechanically isolated from the recirculation system so
that vibrations do not affect the flow of the sand or the measurements. The inclination
of the chute can be varied from 15◦ to 55◦ and is measured to an accuracy of 0.1◦ by
a digital inclinometer. There were small variations in the inclination along the chute of
around 0.1◦ due to it flexing under its own weight. The chute itself is 4m by 0.25m, of
which the entire width and 3m of length are observable experimentally. Whilst in the
chute, measurements are made by instrumentation mounted on a hand operated traverse
(F) located above. Finally, the sand falls freely from the chute onto the return chute
(H) which deflects the sand back into the collection hopper. The machine is enclosed to
contain dust and there is an extensive ventilation and filtering system which removes the
finest particles from the material and the air in the laboratory.

3.1. Material

The material used in our experiments is a polydisperse bumpy quartz sand which, when
new, has a size distribution shown in figure 3(a), with median diameter 1.24mm and first
and third quartiles at 1.03mm and 1.48mm respectively. The sand was sized using the
Single Particle Optical Sizing technique detailed in White (2003) which typically gives a
particle size 20–30% bigger than sieving for natural sands. The recirculation mechanism
degrades the material and a considerable quantity of dust is produced initially. However,
figure 3(b) shows that the distribution quickly tends to a steady state. New sand is
periodically added to replace grains lost through the degradation process.
The limits of the frictional resistance in the µ(I) rheology can be ascertained by record-

ing the value of the height hstop over a range of θ. If the formation of a steady, non-
accelerating layer of sand at a given inclination is possible, then the friction must exactly
balance the gravitational force giving µ = tan θ.
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H

Figure 1. Diagram of Apparatus: (A) Collection Hopper (B) Screw Conveyor (C) Bucket Con-
veyor (D) Feed Hopper (E) Chute (F) Instrumentation and traverse (G) Overflow (H) Return
Chute

Figure 2. Photograph of the apparatus
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Figure 3. Properties of new sand. (a) Cumulative distribution function weighted by volume.
Median diameter is 1.24mm. Measured using single particle optical sizing (SPOS). (b) Distribu-
tion of particle diameter over time. Median diameter shown with error bars signifying the upper
and lower quartiles. Dashed lines signify times at which new sand was added.

We measure hstop as in the first method introduced in Pouliquen (1999). A flow is
started with constant mass flux; when this has reached a time-steady state, the mass
source is suddenly removed by shutting the gate. This allows the flow to slow down while
gradually decreasing in height until it stops, leaving behind a static layer.
The hstop(θ) curve has been shown to follow the phenomenological curve discussed in

MiDi (2004)

hstop(θ) = B
µ2 − tan(θ)

tan(θ) − µ1

, (3.1)

where the constants B, µ1, and µ2 are dependent on the material and on the basal
condition. The constants µ1 and µ2 are interpreted as the upper and lower limits of
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Figure 4. hstop/d as a function of the inclination over the bumpy base. Fitting gives the
µ1 = 0.54 and µ2 = 0.68.

the material’s internal friction for a given basal surface. Fitting equation (3.1) to the
data in figure 4 gives µ1 = 0.54 and µ2 = 0.68 for our material over the bumpy base.
Measurements for hstop on the flat base gave a very narrow range for the friction angles,
with µ1, µ2 = tan(24.4◦ ± 0.2◦). At this point it is not clear if these limits of the friction
coefficient are the same as in a flowing configuration, particularly for inclinations above
tan−1 µ2.
The density of each particle was ρ = 2660 kgm−3.

3.2. Initial Conditions and Mass Flux

For bins and hoppers, the outflow is primarily a function of the exit geometry (Nedderman et al.

1982). In the experiments presented here, the flux, q, is controlled by the rectangular
aperture at the bottom of the hopper, as described above. The maximum mass flux of
20 kg s−1 is attained at an aperture length of around 0.1m. In order to avoid the effects
of hysteresis in the hopper and to ensure that a repeatable state is achieved for each run,
the same startup routine is followed each time: empty the hopper, select the aperture
size and slowly fill up the hopper to the overflow. Dimensional analysis suggests that the
flux will vary as

q ∼ ρuwl (3.2)

for some characteristic velocity u at the aperture. Since the particles are in free fall whilst
exiting the hopper, the velocity is expected to scale as if it is accelerated by gravity over
a distance comparable to l, that is u ∼ √

gl, and therefore

q ∼ ρ
√

glwl. (3.3)

The mass flux was recorded by placing a large bag attached to a crane scale and data
logger under the end of the chute and measuring the bag’s contents as a function of time.
The derivative of this curve gives the flux, q. The plot of the scaled flux, q̂ = q/ρw

√

gl3

in figure 5(a) shows that the scaling law described by equation (3.3) accurately captures
the functional dependence of the flux q upon the aperture length l. For large aperture
lengths, l > 59mm the flow enters a slightly different regime within the hopper where
the value of q̂ alters slightly. The dependence of the mass flux q on humidity and particle
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Figure 5. Mass flux properties. (a) Non-dimensional mass flux q̂ = q/ρw
√

gl3 as a function of
aperture opening l. (b) Variation of mass flux over time for different aperture openings.

degradation has been checked and the effect is negligible. As the flow in the chute is
independent of the conditions within the hopper, it allows q to be calibrated against l
once and the fit curve to be used for all subsequent experiments. Figure 5(b) shows that
the mass flux out of the hopper over time is constant over intervals larger than the data
logger’s sampling time of 0.1 s. The uncertainty in the rate calculation was under 1%. To
ensure a symmetric initial condition, a small step of height 30mm is placed at the top
of the chute, which slows and spreads the particles evenly over the entire width.

3.3. Boundary Conditions

The flow is bounded by two side walls, the basal surface and the ambient air at the free
surface. The sidewalls are the same for all experiments and are made of perspex whose
surface has been allowed to erode to a steady state. These walls exert a frictional stress
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Figure 6. Frame Straddling, a technique developed for time-steady flows allowing for an
increase in temporal resolution using standard photography equipment.

with coefficient µw = 0.45, thus permitting a slip velocity. This has been measured by
conducting an hstop experiment with the perspex as the basal material. Two different
basal surfaces were used, a flat surface identical to the sidewalls and a coarse sandpaper
with a median grain diameter of 0.5mm. The latter enforces a no slip boundary condition
for shallow angles, but some slip occurs at high particle velocities.

3.4. Instrumentation

The chute is equipped with two measurement systems: one to measure surface velocity
and the other flow thickness. Surface velocity measurements are calculated using Particle
Image Velocimetry (PIV). The images for this are obtained from a JAI CL M4+ camera
and a BitFlow R3 frame grabber. The frame rate of the camera is limited to 24 fps, so
in order to minimise streak and obtain a suitable interval between frames for accurate
measurements a frame straddling technique has been developed. Four banks of high-
powered LEDs illuminate a section of the chute at the end of one frame and at the
beginning of the next for approximately 1.5ms. The interval between the flashes is around
1.5ms. A pictorial representation of the synchronisation between shutter and flash can be
seen in figure 6. The Particle Image Velocimetry technique developed by Sveen & Dalziel
(2005) is then employed to cross-correlate the pairs of images and to extract the velocities
of the particles. This procedure produces a grid of 69 by 51 velocities in both the x
direction (u) and the y direction (v). This corresponds to a velocity field with a spatial
resolution of approximately 3.5mm. Since the algorithm utilises sub-pixel detail and
typical displacements are of the order 5 pixels between frames, the error in the velocity
measurement is estimated to be less than 0.1m s−1. Around 50 pairs of images are taken
for each position on the slope which are then averaged over time and along the x direction
to give the cross-chute velocity profiles seen in figures 9(a) and 9(b).

The height of the flow is measured by a Micro Epsilon LLT2800-100 laser triangulator.
This equipment is pre-calibrated, and gives an absolute distance from the flow surface
to the CCD within. It records 100 points per profile at a rate of 400 profiles per second.
This gives the surface height at a resolution of around 1mm between points. At each of
12 positions down the slope, data are recorded for approximately 10 seconds, with the
laser sheet oriented either parallel or perpendicular to the flow. No significant difference
in the mean flow height was seen between orientations. This set-up gives the average flow
height within 0.2mm which is significantly less than the median grain diameter. The
central 120mm of the flow are measured, and the height within a profile typically varies
by less than two grain diameters. Care must be taken when defining the height of the
surface as saltating particles can obscure the dense region below. If the particles get too
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close to the CCD and are out of the depth of field, then no data is recorded. The height
data presented here have been time-averaged profiles.
The triangulator is also used to calibrate the PIV measurements by taking a series of

photographs of a chequered pattern at different heights. The pixel coordinates of points
in the pattern are matched to real world coordinates, thus removing the effects of lens
distortion and parallax from the velocity calculation.

3.5. Data Preparation

In order to study the acceleration of the flow it is necessary to calculate the derivative of
the velocity data. Doing this directly amplifies noise, so the data is first fitted with the
form in equation (3.4). Median averaging of the surface velocity was chosen in order to
neglect the effect of outliers. The functional form used for the fit is

u2 = u2
0 +

β

κ

(

1− e−κx
)

(3.4)

for some constants u0, β and κ. This satisfies the equation

u
∂u

∂x
=

1

2

(

β − γ
(

u2 − u2
0

)

;
)

, (3.5)

which is a linearisation of the momentum equation (2.3) in terms of the kinetic energy
E = u2/2. This form can represent convergence to a constant velocity state for large κx
as u2 = u2

0+
β
κ . For positive κ this velocity is that which would be attained in an infinitely

long chute, barring any phase transition. Constant acceleration (or deceleration) is also
captured for small κx since u2 = u2

0 + βx + O
(

(κx)2)
)

. This fitted all of our data for
appropriate choices of u0, β and κ. Many other choices would doubtless also have worked
without affecting our results. Using this fit, the total friction µ is given by

µ = tan θ − β

2g cos θ
e−κx

(

s2 −
1

Fr2

)

(3.6)

where s2 is given by a Bagnold profile for the bumpy base and a plug flow for the flat
base. The height data was also fitted using a similar functional form that replaces u2

with h. The results of the fit can be seen as solid lines in figures 11(a)–11(d).

4. Results

We observed a number of different flow regimes besides the fully dense regime that we
were expecting. The phase diagrams in figure 7 show the character of the flows as the
inclination θ, and the mass flux q change. The mass flux has been non-dimensionalised
using the scaling ρwd

√
gd.

Figure 7(a) shows that over the flat base two regimes were observed. At a fixed inclina-
tion and for a sufficiently high mass flux the flows were dense and accelerating, however
for slightly lower mass fluxes an instability occurred whereby the flow detached from
the walls into a dense core flanked by dilute regions (pictured in figure 8). This will be
discussed further in section 4.2. The majority of flows on the bumpy base also fell into
one of these two regimes. The bumpy surface also produced a number of regimes not
seen on the flat base (figure 7(b)). For flows over the lowest inclinations, the velocity was
constant down the slope. Of these steady, fully-developed flows, sufficiently high mass
fluxes produced a superstable heap at the base (Taberlet et al. (2003)) and the chute
quickly overflowed. No constant velocity flows were observed for the flat base, as the
friction angle on the flat base was lower than the lowest inclination investigated. For the
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Figure 7. Phase diagram for flows over bumpy and flat bases. (▽) Constant velocity flows,
(�) Accelerating, Dense Flows, (+) Flows with separation at walls, (×) Low density flows, (◦)
Superstable heap formation

Figure 8. Transverse separation. Adjacent panels are separated by 0.25m. Increasing x from
left to right

highest inclinations and for low mass fluxes, a low-density regime was observed whereby
the entire flow became agitated. These flows did not have a well-defined surface and
so PIV and height data were not available. The flows discussed here, unless otherwise
specified, lie in the dense, accelerating regime. We did not notice any bistable regimes
though we did not look for these in detail.

4.1. Fully Dense Flow

The flows over flat bases showed higher average surface velocities than over bumpy bases,
which is to be expected since a flat surface gives less resistance. The typical surface
velocity profile development for each base can be seen in figure 9. Each line represents a
time averaged velocity profile at a given point on the slope. For both flows depicted it
can be seen that the material is accelerating as it progresses down the slope.
A striking result was the effect of the basal surface on the shape of the velocity profile at

the free surface. Figure 9 shows flows with the same control parameters (q, θ) exhibiting
qualitatively different surface profiles. Flows over the flat bases invariably had a profile
with a gradual and continuous change in velocity gradient across the chute, whereas the
flows over the bumpy base developed a plug region in the centre of the chute. The plug
region is flanked by sheared regions near the walls, with the velocity varying linearly
with distance from the wall. Flows over both of these surfaces exhibit a non-constant
acceleration.
The insets of figure 9 show each velocity profile normalised by its peak velocity. In
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Figure 9. Evolution of the time-averaged transverse velocity profile as the material accelerates
down the slope. The flow parameters are θ = 40◦ and q = 19.1 kg s−1. Inset shows u
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Figure 10. Evolution of the time-averaged transverse height profile as the material accelerates
down the slope. The flow parameters are θ = 40◦ and q = 19.1 kg s−1. No height data was
available at the edges.

the flat case, the effect of the shape of the initial condition is transient over a distance
of around 1.5m after release. After this point, the shape of the profile remains steady
in time, implying the y dependence of f is constant. In the bumpy case however, the
slip velocity at the wall tends to a limit while the central, plug-flow region carries on
accelerating implying a non-self-similar shape and therefore the sn change as the flow
develops.
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Figure 10 shows the height evolution for the same flows as figure 9. The variation
of the height across the slope is minimal, typically less than 2d. Height data for the
edges of the flow were not systematically available due to the limited width of the laser
sheet, however, the edges were checked periodically and showed no significant deviation
in height from the centre. As the flow accelerates down the slope, conservation of mass
causes the height to decrease. The surface velocities over a bumpy base are typically
lower and, by this principle, the flow is deeper for the same q over the flat base.
Flows for which θ < θ2 showed no acceleration along the chute, maintaining constant

velocity and height throughout. No non-accelerating flows were observed for flows over
the flat base as the θ1,2 were outside of the investigated range.
For the accelerating flows, though the cross slope velocity profiles are qualitatively

different between the bases, there is no qualitative difference in the development of us

down the slope. Comparing figure 11(b) to figure 11(a) and figure 11(d) to 11(c) we see the
same general behaviour from both surfaces: gradually changing acceleration accompanied
by the reduction in flow height enforced by mass conservation. For both surfaces we see
a general trend of increasing velocity for both increasing q and θ. The third column
in figure 11 plot the volume fraction multiplied by the shape parameter s1 calculated
using the expression q = ρφs1whus. This, in all cases, is in the range 0.3–0.7. A Bagnold
profile has s1 = 3/5, so for a typical volume fraction of φ = 0.6 we should expect to see
a value φs1 = 0.36, and we do for the bumpy base, indicating that the Bagnold profile
assumption is reasonable in the calculation of the friction coefficient. Higher values of
s1φ indicate the presence of some slip developing at the basal surface.
For plug flows φs1 = 0.6 which is closer to the value seen on the flat base. However,

values seen in figures (c) and (a) show that the observed values are slightly lower than
predicted, indicating that some curvature is present in the z direction and the basal slip
velocity is therefore less than the mean surface velocity, as is to be expected as the plug-
like profile is a zeroth order approximation of the flow. Variation in φs1 down the slope
is small.
The different bases produced different behaviours with respect to the bulk friction

coefficient. For the bumpy base, a Bagnold depth dependence has been assumed in the
calculation of µ in equation (2.6). The precise choice of depth dependence does affect the
calculated value slightly. The difference in s2 at extremes of Bagnoldian and plug flow is a
factor of approximately 2, we may safely say that the deviation of µ from the equilibrium
value of tan θ can at most be affected by this much. However, the qualitative behaviour
remains unchanged by the depth dependence. Figure 12(a) shows that on a bumpy base,
µ varies from around 0.55 to 1.1. The inset of figure 12(a) shows that the ratio µ/ tan θ
is less than the steady-state value of 1 for all flows, and no lower than around 0.8. The
very lowest values of µ are attained for low inclinations, where the flows are steady. The
friction balances gravity in these flows despite the inclination being above the angle of
maximal resistance θ2, as the sidewalls give an extra frictional contribution. At higher
inclinations, we see a dependence on q appearing: the lower the value of the flux q, the
lower the bulk Fr and the smaller the range of µ down the slope. For a given Froude
number and inclination the highest values of µ are seen for the flows with smaller flow
heights, this can be attributed to increase in resistance caused by the flow having to
dilate more near a boundary in order to flow (Pouliquen 1999).
Figure 12(b) shows that on a flat base, there is only a weak variation of 0.5 < µ < 0.6

over all Fr. This is slightly larger than the maximal friction angle obtained from the hstop

measurement of µ = 0.45. This disparity is possibly due to the addition of wall friction.
The flux dependence over the flat base is more complicated than for the bumpy base,
and is discussed in section 6.
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(a) Varying flux at θ = 32.2◦ on the flat surface.
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(b) Varying flux at θ = 38◦ on the bumpy surface.
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(c) Varying inclination for q = 11 kg s−1 on the flat surface.
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Figure 11. Effect of varying q and θ on the two bases.

Figure 13 shows the velocity of the material at the end of the chute as a function of the
inclination θ. The exit velocity for a given inclination is a monotonically increasing with
the flux, and is reflected in the decreasing value of µ as the flux increases. This cannot
be collapsed by scaling with the flux q because if friction is the only force limiting the
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Figure 12. µ as a function of Fr. Coloured by inclination. A Bagnold depth dependence is
assumed for flows over the bumpy surface, and a plug flow for the flat surface. Inset shows µ
divided by the value attained for a non-accelerating flow, tan θ.
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Figure 13. Velocity at the end of the chute as the inclination θ and the flux q vary. Flows that
are dense across the entire width are denoted by (◦), and flows that have undergone transverse
separation are denoted by (×).

velocity then eventually u ∝ √
x, independent of q. Setting µ as a constant in equation

(2.3) and assuming Fr is large at equilibrium we integrate to obtain

1

2
u2
s =

1

s2
(sin θ − µ cos θ) xg +

1

2
u2
0, (4.1)

for some constant u0. This expression is independent of q, and therefore we cannot
collapse the data for different fluxes.

4.2. Transverse Separation

When the flows are sufficiently energetic a dilute, high granular temperature region forms
at the walls that flanks a dense core. For a given inclination, the value of q at which this
occurs is lower on a flat base than the bumpy base. This is possibly due to the bumpy
base dampening the high energy particles at the boundary. Since the interaction with the
boundary in this regime is different to that of the fully dense flows, a direct comparison
in terms of µ becomes meaningless, and so these experiments have been excluded from
figure 12(b).
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Figure 14. Height of the low density layer at the basal surface in DEM simulations allowed
to reach a fully developed state. Small particles have radius 0.8, large particles have radius 1.2,
and mixed consists of an equal volume of each particle type.

The data denoted by crosses in figure 13 show the values of θ and q for which the
flow visibly separated from the walls before the material exits the chute. At a fixed
inclination, the separation disappeared for sufficiently high mass fluxes. This phenomenon
is analogous to the 2D numerical simulations performed by McNamara & Young (1994),
where a dense region appears and is contained by boundary regions that have a high
granular temperature and low volume fraction. Similar effects have been reported in
numerous other situations (see Goldhirsch 2003). Figure 8 shows the development of the
collapse of a flow over a flat base. The flow invariably starts attached to the walls and
detaches once there is sufficient agitation of the grains at the boundary. The width of the
high density region in the centre of the chute decreases and appears to tend to a limit.
For sufficiently high inclinations and low mass fluxes the agitation of the grains is large
enough for the entire flow to be in the dilute regime (see figure 7). These very energetic
flows over the bumpy base (θ > 52◦, q . 2 kg s−1) have been excluded from figure 12(a)
as the saltating particles form an ill-defined surface, and hence data is not available.
This low-density effect can also take place at the basal surface. On a bumpy base this

manifests itself at high inclinations (> 46◦) and the effect can be seen through the total
friction, µ. When the separation occurs, µ is relatively small when compared with lower
inclinations (see figure 12(a)), and also becomes independent of the Froude number and
the mass flux.
The thickness and character of this basal layer is governed by a complicated dependence

on other flow parameters. DEM simulations were also performed to investigate this. A
soft particle model was used with a damped linear spring for the normal force (coefficient
of restitution 0) and Coulomb friction for the tangential force (coefficient of friction 0.5).
Particle stiffness was chosen so that the maximum overlap was less than 1%. The time
step was 1/10 of the binary collision time. Particles of radius 0.8 and 1.2 were simulated in
three combinations, all small, all large or mixed equally by volume fraction. The base was
made of an equal mixture of large and small particles held at fixed positions taken from
another simulation where a thick layer was allowed to form randomly. The simulations
were allowed to evolve until equilibrium was reached and then the results recorded until
flat profiles were obtained. The density profile was analysed by fitting the regularised
step function

φ(z) =
1

2

[

tanh

(

z − z0
l0

)

− tanh

(

z − z1
l1

)]

,
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which gave a very good fit in all cases. The width of the bottom layer l0 is shown in
figure 14 where one sees a very strong dependence on the inclination. At the base, a low
density shear layer of thickness l0 supports a high density passive overburden. For all
particle species, the thickness was shown to be monotonically increasing in the slope an-
gle. There are two transition points that can be seen, one where the layer first separates
from the base, and a second one above which the height of the layer increases rapidly
with inclination until the entire flow becomes diffuse and kinetic. This density inversion
phenomenon and the velocity independence of the friction coefficient has also been re-
ported experimentally in Taberlet et al. (2007). However, in contrast to Taberlet et al.
(2007) such flows were seen for high inclinations, far above θ2, indicating that a much
larger energy input is needed for our material to maintain a supported state, possibly due
to the increased rolling resistance and therefore dissipation afforded by the irregularity
of the particles’ shape.

4.3. Surface Waves

Shallow flow systems are subject to instabilities known as roll waves or Kapitza waves
(Forterre 2006) due to the tendency of deeper regions to move faster. This is typified by
the flow rule in equation (1.1). For the flows investigated here, these waves occurred at
angles near θ2 for moderate flow rates. The space-time plot in figure 15 shows the am-
plitude of the waves on a slope of 32.2◦ at a mass flux of 5.9 kg s−1. The time-averaged
height has been subtracted at each position, and the general trend of decreasing height
as the flow develops down the slope is apparent. The colour difference has been nor-
malised such that white corresponds to a 5mm deviation above the mean height and
black represents a 5mm depression. Waves appear soon after exiting the hopper with an
amplitude of around 2–3mm and a wavelength of 404mm. Half way down the slope, at
2.05m after release, the amplitude has increased by a factor of two and the wavelength
has increased slightly to 564mm. The last reading, which shows little surface variation,
would suggest that the flow has crossed some threshold and the disturbance has been
neutralised. The linear theory presented in Forterre & Pouliquen (2003) gives a stability
threshold of Fr ' 0.7, above which the flow is susceptible to these surface waves. The
phase speed of the waves is in agreement with the velocity calculated using PIV to within
5%.

4.4. Convection Currents

Figure 16 shows typical behaviour for the horizontal velocities at the surface of a flow
over a bumpy base. There is a down-welling at the walls which is accompanied by an up-
welling around 2 cm toward the centre, reminiscent of wall-cooling. Such patterns have
been observed before but they are contrary to the inferred flow field in studies such as
Savage (1979).

4.5. Longitudinal Vortices

Figure 17 shows the flow over a bumpy base with θ = 40◦ and q = 5.5 kg s−1. Approxi-
mately 3m after the sand is released, peaks in the downstream velocity develop similar
to those seen by Börzsönyi et al. (2009) and Forterre & Pouliquen (2001).

5. Numerical Solution and Comparison with µ(I) Rheology

A first order finite volume code has been developed to investigate the rheology pre-
sented in Jop et al. (2006) in an accelerating regime. This rheology has received a lot of
interest recently but has only been tested for values of I that are typically low (/ 0.5)
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Figure 15. Variation in height at θ = 32.2◦ q = 5.9 kg s−1. The colour represents a deviation
about mean in mm. The black lines indicate the calculated velocity from PIV measurements,
showing that the waves move with the same velocity as the particles

and only for non-accelerating flows. This rheology assumes an isotropic pressure and a
constant density. Experimental evidence in Pouliquen et al. (2006) suggest that some
variation in φ will occur in regions of high I, but the dependence is rather weak so we

ignore this. The flow is observed to be flat across the slope so can neglect
∂P

∂y
and as-
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Figure 16. Horizontal velocity for a flow on a bumpy base with θ = 44◦ and q = 13 kg s−1
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Figure 17. The formation of longitudinal vortices on a bumpy base with θ = 40◦ and
q = 5.5 kg s−1. The height decreases monotonically from 17mm at the top of the chute to
11mm just before the exit.

sume that cross-slope velocities are zero. Down the slope the height varies by at most

20mm over 2m so the ratio of
∂P

∂x
to gravitational acceleration and friction is of order

∂h

∂x
= O(1/100) so we neglect this. If we again consider the surface height to vary from

40mm to 20mm over 1 s this gives a vertical strain rate of order
∂w

∂z
= 1 s−1. Because of
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incompressibility this must of course match the downslope strain rate
∂u

∂x
= 1 s−1 (cor-

responding to a change of 2m s−1 in 2m ). These seem like large strains but we neglect
them because in the µ(I) rheology these contribute to the deviatoric stress after being

divided by the total strain. This is dominated by
∂u

∂z
, which for these rapidly accelerating

flows could be given by a flow of 4m s and 40mm thick corresponding to a strain rate
of 100 s−1. Thus the only stress components we consider are σxy and σxz since all others
are (1/100). Taking the velocity to be u = (u, 0, 0), then the conservation of momentum
of a time-steady flow is given by

ρφ

(

u
∂u

∂x

)

= ρφg sin θ +
∂σxy

∂y
+

∂σxz

∂z
. (5.1)

Since we are taking h constant across the slope the depth and width integrated conser-
vation of mass equation is

ρφw
∂hū

∂x
= 0, (5.2)

therefore hū = const. = q/ρφw. Rearranging gives ū ∝ h−1 as is a function only of x.
The stress tensor is defined by

σij = −Pδij + τij and τij = µi(I)P
˙γij
|γ̇| (5.3)

where the γ̇ij = ∂iuj+∂jui are the components of the strain tensor and |γ̇ij | =
√

˙γij ˙γij/2
is the local strain rate.
Solving the z component of the momentum equation in the long wave approximation

(Gray et al. 1999) gives hydrostatic pressure P = ρφgz cos θ. In this rheology, µi(I)
takes the form shown in equation (1.3), with the three parameters taken from hstop

measurements and a typical value of I0 = 0.3 (Jop et al. 2005).
The stresses induced by changing surface height enter through the term

∂P

∂x
= ρφg cos θ

h

u

∂u

∂x
, (5.4)

using an upper bound for the acceleration ∂xu < g sin θ/u and the mass conservation
equation 5.2 we find we can neglect these stresses if µ > Fr−2 tan θ, which is the case
for the flows investigated here. For the bottom surface, a no-slip boundary condition is
applied while for the sidewalls a slip boundary with constant Coulomb friction is applied.
The latter can be written as

σxy = −µwPu/|u|, (5.5)

where µw is a constant taken from hstop measurements over the perspex wall material
(µw = 0.45).
Care must be taken at the free surface as the highest derivative in equation (5.1)

is multiplied by zero. The equation is therefore singular and first order there, and no
boundary condition is necessary. However, as σ ∝ P the surface is stress free which is the
boundary condition we would normally expect to apply. This leads to the behaviour of I
near the free surface being complicated and warrants further investigation. If we assume
a Bagnold depth dependence near the surface then

∂u

∂z
=

Ibag
√
zg

d
(5.6)

for some constant Ibag. If, in addition to this, there is a cross slope variation near the
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Figure 18. Depiction of the cell structure and differentiation schemes used in the finite
volume method for solving the µ(I) rheology.

Figure 19. Regularisation of shear stress at zero strain.

surface then

I =
d√
zg

√

(

∂u

∂y

)2

+

(

∂u

∂z

)2

=

√

d2

zg

(

∂u

∂y

)2

+ I2bag, (5.7)

implying that I → ∞ as z → 0 at the free surface if ∂yu 6= 0. The thickness of the
boundary layer over which the y-variation in I decays to Ibag is given by

z =
d2

I2bagg

(

∂u

∂y

)2

. (5.8)

We do not attempt to resolve this boundary layer in our simulation as µi remains finite
and is multiplied by P = 0 at the surface, meaning that the stress remains well defined
everywhere. A fixed rectangular grid, pictured in figure 18, is used to define the locations
at which velocity and stress information is stored. Each velocity point is stored in the
centre of a cell, with ∂iu calculated at the cell boundary using central differencing. These
derivatives are then in turn centrally differenced to give the divergence of σ.
Care must also be taken in regions where |γ̇ij | = 0 as equation (5.3) becomes an

inequality there. For such regions to start shearing, the yield stress τij = µ1P , which is
implicitly defined in the rheology, must be overcome. Full resolution of these areas would
require tracking a yield surface and estimating ill-defined static stresses. However, as
these regions are small compared to the bulk of the flow, this added complication gives a
negligible increase in accuracy at the expense of considerable computational complexity.
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We can therefore relax this condition by introducing a small regularisation parameter, ǫ,
such that

|γ̇ij | =

√

(

∂u

∂z

)2

+

(

∂u

∂y

)2

+ ǫ2. (5.9)

This has the effect of removing the yield stress µ1P and placing an upper bound on the
effective viscosity of the material (νeff = µP

ǫ ). As a result, a small creep velocity appears
in regions that would otherwise be static. A similar procedure is followed with the wall
stress to aid convergence, whereby |u| is replaced with

√
u2 + δ2.

The strong non-linearities in the problem obstruct the use of high order solvers. In
particular, a pseudo-spectral Galerkin method produced solutions that degenerated into
noise after a few iterations. MATLAB’s ode15s, a first-order, multi-step, stiff ODE solver
gave rapid convergence to the solution.
The approach was as follows:
(a) Extrapolate velocity field quadratically half a grid space to the boundaries,
(b) Substitute in velocity boundary conditions,
(c) Calculate derivative quantities and stress tensor using central differences,
(d) Substitute in the stress boundary conditions at the walls,
(e) Take divergence of the stress tensor,
(f) Use ode15s to calculate velocity field for chosen x values.
The initial condition requires specifying u(0, y, z) but, experimentally, only the initial

velocity at the surface u(0, y, 0) can be measured. As such, the depth dependence of the
velocity profile is unknown and can be treated as a degree of freedom with which to fit
the numerical results to the experimental data. Experimentally, to begin with, there is
little y-variation of the velocity profile. For this reason, the initial condition chosen is
to be a near-plug flow with the value of the mean velocity slightly less than the first
recorded experimental measurement. This was done to allow the effect of the initial
condition to be minimised before the flow is quick enough for comparisons to be made
to the experimental data. There is a small amount of shear introduced in the initial
profile to avoid the problems of near static regions and to aid convergence. Other initial
conditions based on the shape of the experimental velocity profile have also been tried,
but the results are largely similar after around 1m of travel.
Figures 20 and 21 show the internal properties of a typical flow at an inclination just

above the maximum friction angle. The velocity profile in figure 20(a) agrees qualitatively
with expectations — the velocity is greatest at the free surface, and decreasing toward
the boundaries. The profile of I in figure 20(b) has some interesting features — there are
a number of high I zones: the centre of the base, the upper portion of the side walls and
the boundary layer near the free surface, where the inertial parameter is infinite (and
so not plotted). Using numerical data we can use equation (5.8) to estimate the size of
the boundary layer. A typical value for uy at the surface for the simulations presented
in figure 20 is 1, meaning that the boundary layer has size z/d = 0.02. The maximum
value of uy at the surface is higher at 44 but is concentrated very near the walls, where
the assumption of a Bagnold background profile and therefore equation (5.7) is invalid.
This length scale is too small to affect the grains for the size of the flows investigated
here. This is to be expected as a large change in I only elicits a small change in µ(I)
and σ since µ → µ2. This can be seen in figure 20(c). The resolution of the simulations
presented here would need to increase by an order of around 100 to flatly capture the
change in I over this layer.
Figure 20(d) shows the velocity field normalised by the transverse profile taken at

some arbitrary depth. Since the profiles are not just constant multiples of each other, the
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Figure 20. Results of a simulation at θ = 38◦ and q =17.8 kg s−1, 3.5m after release. The
parameters used are µ1 = 0.54 , µ2 = 0.68 , I0 = 0.3 and µw = 0.45. The height was calculated
as h = 0.017 = 17d.
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Figure 21. Derivative quantities of simulation at θ = 38◦ and q = 17.8 kg s−1, 3.5m after
release. Same parameters as figure 20 are used.

functional form of the velocity is not separable, i.e. it cannot be represented by the form
u = U(x)f(y)g(z), meaning that the transverse and depth effects are intimately tied.
Figure 21 shows the flatly changing derivatives of the velocity field used in the calcu-

lation of I and the stress tensor σ. It can be seen that the largest shear occurs at the
base, and so the frictional losses are highest there.
Substitution of the µ(I) rheology and the boundary condition (5.5) into equation (5.3)

gives two contributions to the total friction:

µ = µw

h

w
+ µb, (5.10)
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q =17.8 kg s−1 using parameters µ1 = 0.54, µ2 = 0.68 = tan(34◦) and I0 = 0.3

where µw is defined as in equation (5.5), and µb is the effective basal friction and must
therefore be in the range µ1 ≤ µb ≤ µ2. This relationship specifies the total frictional
resistance — figure 22 shows the total friction approaching µ2 as the flows accelerate
and get thinner. This is a behaviour not seen in the experimental results and will be
discussed in section 6.
The transverse surface velocity profiles that are produced by the simulations exhibit

a qualitative difference to those observed experimentally. In the simulations, there is
invariably a flat change of gradient over the entire width of the chute, as opposed to the
experimental profiles on the bumpy base which have three linear regions. A comparison
between the numerical and experimental flows on an inclination slightly higher than θ2
is shown in figure 23. We see that the total friction µ for the experimental data is much
higher than than the total friction predicted using the µ(I) rheology.
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the top of the chute. The bumpy case is plotted against Ib, and the flat against Fr. The lines in
(b) indicate the region where a Bagnold profile is likely.

For inclinations below the maximum friction angle, good quantitative agreement of the
average velocity, us, and µ can be achieved by changing the rheological parameters from
their experimental values. It is also possible to closely match the slip velocity at the wall
by changing the wall friction coefficient. Any change of µw only has a small effect on the
average velocity since its effect is weighted by the aspect ratio h/w, and can therefore be
independently chosen to match the wall velocity.

6. Discussion

The µ(I) rheology has been developed and validated primarily for equilibrium flows
with low I. However, we have compared it to our experiments of accelerating flows and
high I, and found poor agreement with our data. One crucial difference is the existence
of the limiting value of friction in equation (5.10) as the flow develops and thins. For
this rheology, which takes its parameters from hstop experiments, the limiting value is
independent of the inclination of the flow. A comparison between the numerical results
in figure 22 and the data presented in figure 12 strongly suggests that experimentally
this is not true. For inclinations where θ > tan−1 µ2, the µ(I) rheology predicts a total
friction value of µ2, however we observe steadily increasing values much larger than those
measured in the hstop experiments.
Unless explicitly mentioned, all experimental data presented here appears dense at

the free surface. Without this property, accurate measurements could not be made with
our equipment. We can indirectly examine the averaged volume fraction by using the
equation for global conservation of mass q = s1ushwφρ. However, care must be taken
with the unknown shape parameter s1 in order to gain information about the volume
fraction. The parameter s1 is the product of two contributions: one from the z depth
dependence and from the y transverse dependence. If the velocity profile is separable
then this can be written s1 = sysz where sy is defined as

∫

u/us|z=0 dy, (6.1)
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which is a function of the velocity profile at the surface. We can then use this to calculate
the product szφ.
Figure 24 shows szφ normalised by a packing fraction of 0.58, a typical volume fraction

as measured by Louge & Keast (2001). A value of 1 indicates a plug-like depth depen-
dence, which figure 24(a) suggests is a reasonable approximation for θ > 36◦ on the flat
base. Lower inclinations have a lower value of sz, indicating more curvature of the profile,
indeed for the lowest inclinations a value of 0.6 is attained, suggesting that a Bagnold
profile is also possible for a flat base.
The bumpy base exhibits a larger range of sz as can be seen in figure 24(b). At the

very lowest inclinations the value of sz is small and suggests the presence of a static
region at the base of the flow, similar to those seen in Taberlet et al. (2003). These are
only seen for inclinations below the maximum friction angle, θ2. For inclinations > 36◦

and Ib < 1, szφ remains very close to a value of 0.6, suggesting a Bagnold profile. In this
region, there is a slight decrease with I as seen before by Forterre & Pouliquen (2008)
and Baran et al. (2006), due to the packing fraction decaying as I increases. For higher
values of Ib the flow becomes slightly more dilute at the top surface and a slip velocity
develops at the base. It must be noted that for smaller values of Ib the flows have a very
well defined surface, with exceedingly few saltating particles. A combination of these two
factors gives rise to the large variations in szφ, with its value ranging from more than
0.6 to less than 0.2.
Despite the flow remaining dense in the accelerating regime, the grains are not acting

in the frictional manner as described by the µ(I) rheology. To first order, the grains are
acting as a pseudo-viscous fluid: the resistance of the fluid is roughly proportional to Fr
(see figure 12(a)), rather than being bounded above by µ2.
There are a number of possibilities that could account for the extra resistance required

to reconcile the rheology with the experimental data. One of them is that the pressure is
strongly non-isotropic. If the lateral pressure is much greater than that in the z direction,
the frictional force at the wall will be much larger. Another possibility is the effect of air
drag on the particles at the surface. The drag force on a spherical particle is given by a
Stokes’ drag modified by a turbulent drag factor (see Börzsönyi & Ecke 2006)

Fdrag = 3πµairdvc(v), (6.2)

where µair is the dynamic viscosity of air and c(v) is given by c(v) = 1+0.15(vdρair/µair)
2/3.

Taking this expression and forming the ratio to the gravitational force gives the relative
magnitude of the drag effect

Fdrag

mg
=

18µairvc(v)

d2ρ
. (6.3)

The velocity at which the drag is equal to the gravitational forcing is around 7.5m s−1 but
only affects those particles saltating away from the bulk above the free surface. Figure 25
shows the size of this ratio as the velocity varies. As the free surface is not vertical, after
the particles are ejected they rejoin the flow shortly afterwards, and so this prediction
of the terminal velocity is an upper bound and will not be reached. This effect is also
reduced by the flowing grains shearing the air immediately above. This means that the
ambient fluid is not at rest, the relative velocities are lower and the drag is reduced.
Another air-induced effect is the stress exerted by the stationary air on the free surface
of the flow. However, a Prandtl boundary layer analysis reveals that this effect is small,
and is around 0.1% of the gravitational forcing (see Börzsönyi & Ecke 2006, for more
details).
One of the short-comings of the hstop quantification of friction is that µ1 and µ2,
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Figure 25. The relative effect of gravity and the turbulent air drag on a spherical particle
falling vertically in an ambient fluid.

parameters relevant to the internal flow, are dependent on the boundary condition. As
such, for high velocity flows, if the character of the boundary interaction changes, µ1 and
µ2, which are defined for stopping flows, may be no longer relevant.
The pseudo-viscous effect for large I suggests that including higher order terms as an

extension to the µ(I) rheology might be a good approximation. These would not effect the
rheology in the regime were it has been well validated but might improved the accuracy
for higher I. Such a form is

µ(I) =
µ1I0 + µ2I + cI2

(

d
h

)α

I0 + I
(6.4)

where the new constants c and α are used as fit parameters. This form captures the gen-
eral linear behaviour of µ for large I but is unable to capture the second-order dependence
on either q or θ. The result of the fit can be seen in figure 26(a).

Plotting µ as a function of either Fr or Ib leaves unresolved dependencies on both q and
θ. There are three non-dimensional groups in the problem, namely Fr, n, and θ which
can be used to find a scaling law. Defining a combination of the first two as

Iα =
Fr

nα
(6.5)

gives a modified version of Ib which collapses the data over q for each inclination for a
choice of α = 1/3 for accelerating flows. The fit is shown in figure 26(b) which suggests
a linear dependence between µ/ tan θ and I1/3

µ

tan θ
= a(θ)I1/3 + b(θ) (6.6)

for some choices of a(θ) and b(θ). The data suggest that a and b share an asymptote
as well as the position at which their gradient tends to zero and as such, the functional
form of the hstop curve in equation (3.1) is well suited to this. We can write

a(θ) = B

(

tan(φ2)− tan θ

tan θ − tan(φ1)

)

(6.7)
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Figure 26. (a) Fit with I2 extension to the µ(I) rheology. Solid lines are the ex-
perimental data, black, dashed lines are the fit curves. The fitting parameters were
µ1 = 0.58, µ2 = 0.82, I0 = 0.37, c = 0.0015, α = −2. (b) µ plotted against I1/3 (time-steady
flows removed). Black, dashed lines give fit of data using the θ dependence in equation (6.8).
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where upon fitting, B = 0.03, φ1 = 23.1◦ and φ2 = 55.9◦. This gives the representation

µ

tan θ
= a(θ)

[

1.5 + I1/3
]

+ 0.75. (6.8)

This relationship removes the friction angles deduced from hstop experiments from the
rheology and replaces them with two other generalised friction angles. The larger angle
corresponds to the point after which µ/ tan θ is constant, and is coincidentally the highest
inclination for which experiments were carried out. At these high inclinations, µ saturates
at around 0.8 tan θ.
In order to reconcile this analysis with previous studies, it is necessary to investigate

the angles for which equilibrium states exist in more detail. We plot µ as a function



30 A. J. Holyoake and J. N. McElwaine

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

Ib

n
-1/3

-1

30
32.2
34.1
36
38
40
41.9
44
46
47
49.7
51.8

θ (◦)

Figure 28. Log plot of n against Ib for the bumpy base.

of Ib for two inclinations in figure 27 and against Fr in the inset. The first inclination,
θ = 34.1◦ is just below the angle of vanishing hstop θ2 = 34.2◦, and the second one
above at θ = 36◦. At the lowest mass fluxes, both inclinations indeed exhibit flows with
constant friction coefficient. For the lower inclination, these flows are not accelerating as
constant Fr (or equivalently Ib) is achieved down the slope. At the higher inclination,
Fr and Ib decrease as the flow progresses. The start point for each flow is marked with
a dot. The values of µ for these flows are in agreement with the values recorded in the
hstop experiments, and therefore also agree with the numerically-investigated rheology.
A slight complication is introduced as µ is no longer a single valued function of either Fr
or Ib possibly due to the stabilising influence of the sidewalls. The change in µ at θ = 36◦

as q varies is around 7%, and drops to 4% for 34.1◦. It is also interesting to note that
accelerating flows for these low inclinations are collapsed over q when using I1/3 as the
appropriate non-dimensional number, whereas the flows with constant µ are not. Steady
µ flows are well explained by the µ(I) rheology, whereas the accelerating flows need an
extra rheological contribution to explain the behaviour. It is proposed that I1/3 gives the
appropriate scaling for these extra contributions.
A further indication of a difference in regime can be seen in figure 28, which shows

a log-log plot of the dependence of h/d on Ib. Manipulation of the µ(I) equations (1.1)
and (3.1) gives

Ib = −γn−1 + β

(

tan θ − µ1

µ2 − tan θ

)

. (6.9)

The low inclinations for which this rheology is expected to work does exhibit a slope
of gradient -1, but quickly changes as the inclination increases. The accelerating flows
exhibit a behaviour such that Ib ∼ n−3. Given that µ is no longer simply a function of a
parameter such as Ib, and different scalings are required to collapse the accelerating and
constant µ regimes, it is possible that other flow variables such as granular temperature
are needed to fully describe the system.
The form proposed in equation (6.8) predicts that the flow cannot reach a steady

velocity above θ = φ2. Below this threshold, the terminal state is given by I1/3 =
0.25/a(θ)−1.5. Above this threshold, the total friction µ is always less than the maximum
value µ = 0.75 tan θ, resulting in an constantly accelerating flow.
However, DEM simulations for flows on high angles suggest that non-accelerating states
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Figure 30. (a) The terminal velocity of full-width flows on a bumpy base as predicted by the
fit formula (3.4). Each line represents the terminal velocities at a given inclination as the flux
varies. (b) The terminal value of I , Iterm as it varies with q and θ. The value of h used in the
calculation is calculated from q, assuming a constant φ.

can exist, although they are not dense throughout their depth. Figure 29 shows the steady
state value of Ib for multiple θ, q, and particle species. At these high values of Ib, the
particle stiffness and size become important as the dissipation during inelastic collisions
provides another mechanism for energy dissipation. For lower inclinations, the variation
in terminal Ib is very small between different particle species. For the high inclination
flows, the final state is periodic, where the flow separates from the base and shortly after
falls, colliding with the base again dissipating energy, allowing µ → tan θ, at least in an
averaged sense. In order to replicate this in the lab, the chute would need to be many
kilometres long. It is also not clear if the ambient fluid would have a significant effect on
the flow in this state.
The fitting function in equation (3.4) also can be manipulated to give a prediction of if a

terminal velocity vtermexists. If κ > 0 then vterm can be calculated by v2term = u2
0 + β/κ.

For flows with a constant velocity in the chute, vterm is taken directly from the data.
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Figure 31. Phase diagram showing how the predicted terminal mass hold up ñ and θ vary. (+)
indicates flows with a predicted constant velocity terminal state and (�) indicates flows that
have a predicted steady state, but have separated at the wall. No data exists for the dilute flows
as n is ill defined there. There is also no data for low flow rates q as the apparatus was sensitive
to cross slope variation in the initial condition for very thin flows. The shaded area shows where
h < hstop and heap flow occurs.

Although care must be taken when extrapolating data outside of the observed range,
all but one of the terminal velocities were less than double the velocity at the end of
the chute. This indicates it is not unreasonable to expect that the flow, when at the
extrapolated velocity, is in a dense state similar to how it is observed in the chute, and
so the extrapolated terminal state is a likely outcome. If the flow undergoes a phase
transition then the development is likely to be substantially different to the extrapolated
development.
Figure 30 shows the terminal velocity vterm, and terminal inertial number Iterm (when

they exist) for flows over the bumpy base. Figure 30(a) shows vterm as a function of
the control parameters θ and q. A clear structure is shown where the terminal velocity
is a strong function of the inclination, especially at high inclinations. Indeed, for flows
over 51.8◦ no steady flows were predicted by the extrapolation, perhaps indicating that
there is still an upper limit to the friction, albeit much higher than the values measured
from hstop experiments. The dependence of vterm on the mass flux, q, is also increasing.
However, as q increases, the dependence weakens suggesting that the terminal velocity
will become independent of the mass flux (and therefore the flow height). This is possibly
due to the wall friction giving an increased contribution as the flow deepens.
The second subfigure 30(b) shows the terminal value of the inertial parameter Iterm,

as a function of θ. If I is indeed the only parameter that governs the flow then we would
expect total collapse of the data in this graph, however there is still significant spread.
Plotting the data in terms of I1/3 as in figure 26(b) does not significantly improve the
collapse of the data either.
The predicted values of the steady state mass hold-up ñ = nφ/0.58 can be seen in

figure 31. In contrast to the µ(I) rheology which predicts that for flows on inclinations
θ > θ2 should have an indefinite, linear acceleration, we see that steady states are possible
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in this region. Also shown is the shaded region underneath the hstop curve, in which a
heap will form with a flowing layer on top of it. At the other end of the space, for high
inclinations and small ñ we see the predicted steady state for the separated flows. As no
data was available for the dilute flows (as n is ill-defined), the boundaries of this area of
the phase plane were estimated.

There are no data for very low fluxes q < 1 kg s−1 as the apparatus tended to produce
a low energy, uneven saltating state, which is initiated by the drop from the hopper to
the chute, again making n ill-defined.

The flows over a flat base did not exhibit such a rich range of behaviours. The data
set was much smaller as transverse separation affected a large proportion of the flows,
and has therefore been excluded from most of the analysis. Figure 12(b) shows that µ
is invariably lower than on the bumpy base, as the flat base gives less resistance. The
range of µ seen over the small base is much lower, and is almost uniform for all Fr. This
fits in well with the hstop data, which only gave a difference of 0.2◦ between θ1 and θ2.
As a result, the µ(I) model with constant µi gives good agreement with the data. It it
not clear if the flows on the flat base will approach a terminal velocity in the same way
as the bumpy base. Since the acceleration of these flows is approximately linear, the fit
(3.4) is degenerate for three parameters, meaning that κ, and therefore the extrapolated
terminal velocity is very sensitive to small amounts of noise.

However, this zeroth order, sliding block model cannot capture the cross-slope velocity
variation. As the flow accelerates, mass conservation dictates that if φ stays constant,
then the height must decrease and the flow must elongate. This elongation will then excite
an internal flow structure, generating transverse gradients in the stress and ultimately
the cross-slope velocity profile seen at the surface.

Figure 32 shows an interesting dependence of µ on the mass flux for the flat base. Low
mass fluxes demonstrate the expected behaviour of µ increasing with Fr. However, as the
mass flux increases, the gradient of this slope decreases until it becomes negative. This
effect is seen for all of the fully dense flows investigated here. Having a negative gradient
of µ(Fr), indicates that in this regime the flows will accelerate faster and faster until a
flow transition occurs or other forces come into effect.
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7. Conclusion

Previous work on granular flows has concentrated on I < 0.5 (MiDi 2004). The µ(I)
rheology and the flow rule Fr = −γ + β h

hstop
have been successful in predicting the

dynamics of such flows. However, they suggest that no non-accelerating flows are possible
for θ > tan−1 µ2 since hstop = 0. Our experiments show that these models are inaccurate
for larger θ and that steady flows could be possible on much steeper slopes. A number
of interesting instabilities were also observed. We have observed a transverse separation
where a dense core in the middle of the chute is flanked by dilute regions which grow
in size down the chute. We have also seen a transition where the entire bulk of the flow
becomes energised, unstable and dilute. A transverse velocity profile instability in the
form of longitudinal vortices was also seen for intermediate inclinations.
Flows over the flat base are well-modelled by constant total friction. Although there

was some complicated variation with the Froude number and flow depth, it was small
compared to the range of the total friction on the bumpy base. However, a significant cross
slope velocity variation was observed that is incompatible with some granular models
which predict a plug flow over flat surfaces. Development of a model to capture these
effects remains a subject for future work. Of particular interest would be the comparison
of this data with the 3d numerical simulations of kinetic theory.
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