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Rapid Granular Flows in an Inclined Chute

Alexander James Holyoake

Abstract

The aim of this thesis is to investigate the flow of granular materials on steep

slopes. These occur naturally as snow avalanches and rock slides and are also

important industrially. The flow of grains down inclined planes has been widely

studied but nearly all work has focussed on relatively low slope angles where

steady, fully developed flows occur after a short distance. Nearly all granular

flow models have a maximum value for the friction and therefore predict flows

on steeper slopes will accelerate at a constant rate until the interaction with the

ambient fluid becomes important. This thesis tests this prediction by investi-

gating flows over a much greater range of slope angles. We perform chute flow

experiments on steep slopes with two different basal conditions, one smooth and

one rough. We report on dense flows that are steady in time and are from 4 to

130 particle diameters in depth on slopes ranging from 30◦ to 50◦. Though these

flows do not vary in time, all but the flows on the rough base at the lowest incli-

nations accelerate down the chute. A recirculation mechanism sustains flows with

a maximum mass flux of 20 kg s−1, allowing observations to be made at multiple

points for each flow over an indefinite period. Flows with Froude number in the

range 0.1–25 and bulk inertial number 0.1–2.7 were observed in the dense regime,

with surface velocities in the range 0.2–5.6m s−1. Previous studies have focussed

on I / 0.5. We numerically solve a rheology that is qualitatively sucessful at

modelling equilibrium flows (Jop, Forterre & Pouliquen, 2006, Nature, 441, 167-

192) and find a generally poor agreement with our experimental data. Our data

does not suggest that there is a maximum value of friction, but that steady flows

may be possible on much steeper slopes than previously realized.

We also observe a transverse inelastic collapse of the flow, which is investigated

using Lun’s kinetic theory with appropriate boundary conditions. This theory has

sucessfully predicted Rayleigh-Bénard type longitudinal vortices. We also observe

these in our experiments and a transition to an unstable, possibly turbulent dilute

regime, which are left as subjects for possible future study.
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Introduction

1.1 Motivation

Granular matter has fascinated the minds of many since ancient times. Indeed,

Archimedes (circa 200 B.C.) calculated the number of grains of sand that would

fill the universe as he knew it, producing the oldest research paper for which we

still have proof of existence. Some one hundred years later Lucretius, the Latin

philosopher was possibly the first to ponder flowing grains:

One can scoop up poppy seeds with a ladle as easily as if they

were water and, when dipping the ladle the seeds flow in a contin-

uous stream. . .

(Lucretius, tr. Duran, 2000)

Indeed, throughout history granular materials have played a significant role in

daily life. The age-old processes of farming, mining and construction each deal
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Examples of industrial and geophysical granular processes. (a)V-mixer
used to mix two species of particle countering the effects of segregation. (b) Large
powder snow avalanche. (c) Transportation of granular materials in a cornshed. (d)
Coal conveyor. (e) Martian avalanche. (f) Collapsed grain silo.
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with manufacturing, transporting and manipulating granular materials. Each

year in the United States alone, it is estimated that more than one trillion kilo-

grams of granular material are manipulated by the pharmaceutical, food and

chemical industries (van Cleef, 1991). Most of these will be transported, poured

or mixed and stored in piles, silos or other containers at some point. In fact,

the only substance that man manipulates more than granular materials is water

(de Gennes, 1999).

Despite the prevalence of granular flows in everyday life, there is still a lack of

fundamental understanding of why this class of material behaves as it does. Small

gains in the understanding of granular flows can potentially give a significant

improvement in how we handle powders and grains on a daily basis. We still

manipulate granular materials in often clumsy and dangerous ways — in industry,

unwanted small particles that are a by-product of manufacturing can be toxic

and explosive. We battle against elements of the granular phenomenology such

as segregation in order to avoid structural inhomogeneities in building materials,

to make sure our drugs are evenly mixed, and to efficiently transport materials

from one place to another.

Granular materials and flows are also ubiquitous in the natural world. Each

year approximately 200 people lose their lives due to snow avalanches (Armstrong

et al., 1992), and a substantial amount of property is lost to avalanches, debris

flows and earthquakes. The American Avalanche Association estimates that of

the order of one million snow avalanches fall each year in the world, and the

insurance claims by the Swiss alone are of the order of £40 million annually, with

the capital invested for direct and indirect prevention many times higher. With

the combination of increased population pressure in areas of high avalanche risk,

and the melting of permafrost, which may increase the likelihood of avalanches

occurring, understanding these flows has never been more important. Effective

defences can save lives as well as provide a substantial economic benefit.

Natural granular flows are not limited to snow avalanches and debris flows.

They are also found in submarine avalanches (Klaucke et al., 2004) and potentially

devastating volcanic ash flows such as the Mount St. Helens eruption in 1980

Voight et al. (1985). This released 2.5 km3 of material killing 60 people, spreading

widespread destruction with an estimated ultimate cost of around 1 billion USD.
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These flows can also be found extraterrestrially, examples of which are interstellar

dust clouds and Martian avalanches (Treiman & Louge, 2004).

Even in the area of space exploration, the importance of granular materials

should not be underestimated. Any objects landing on a planet must know how

to deal with the technological challenges that the granular surface may present

(Louge, 2009; Treiman & Louge, 2004).

1.2 Complexity

Even a cursory glance at the granular literature reveals that the field is in a

state of flux. Real granular flows can be subject to a plethora of complicating

forces. These include adhesion, cohesion, van der Waals forces, magnetic forces

and capillary forces from the interstitial fluid. Indeed, even without any of these

effects, the description of a dry, cohesionless granular material still represents a

challenge and the question of which equations should be used in a given situation is

still controversial. Many phenomena remain unexplained by any model. As such,

in this thesis we restrict our analysis to large particles such that electrostatics

have a negligible influence and the case where moisture and interstitial fluids do

not affect the dynamics.

A näıve first look at the physics of dry granular materials suggests that they

should be simple to analyse — they are assemblies of large, macroscopic particles

with no cohesive forces. Yet, despite this apparent simplicity granular materials

remain poorly understood.

A number of effects complicate the use of traditional continuum thermo- and

hydro-dynamical principles. A lack of separation of scales between typical flow

lengths and the size of the constitutive particles means that continuum models

often cannot capture important regions where the flow is thin. The inelasticity

of the particles causes dissipation which means that a normal thermodynamical

energy balance involving a temperature does not exist. As the important length

scale in granular flows is the particle diameter d , which typically is of the or-

der 10−6–10−3m, the relevant energy scale is given by the energy required to
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raise the particle by a diameter or so, i.e mgd ∼ 10−11 J for sand. In contrast,

the thermodynamic energy (at room temperature) kT ∼ 10−21 J (where k is the

Boltzmann constant), which is 10 orders of magnitude smaller than the potential

energy scale. Since inelasticity renders any thermal motion unimportant when

compared to the dynamical forces acting on the grains, the system can be consid-

ered athermal. The lack of a temperature distribution means that the particles

are unable to explore the phase space and arrive at a ground state in the same

way as a conventional gas or liquid. This can be observed when pouring sand onto

a flat surface: the ground state of the system occurs when the potential energy

is minimised, i.e. when the particles form a monolayer. However, with granular

matter this ground state will not be reached unless external forces are applied

and therefore the pile of granular material can exist indefinitely. Moreover, the

angle of the slope that the pile forms can take one of many values, indicating

that this process is not only metastable, but also multistable. As a result, as each

configuration of particles has its own unique properties, repeatability of granular

flows are often difficult to achieve, especially for flows near the static threshold.

The lack of thermodynamic equilibrium means that standard entropic arguments,

which usually facilitate mixing, are no longer valid and are easily outweighed by

dynamical effects. As a result, we see phenomena such as segregation occurring

whereby typically larger particles in a mixture of granular species will float to

the top when subjected to some kind of agitation and therefore sees a decrease

in entropy. An example of this effect can be seen in figure 1.2 where flow is

self-agitated by shearing in a thin layer on the free surface.

In fact, it is an open question in the study of granular physics if a single set of

constitutive relations will ever capture the wide spectrum of granular behaviours.

As a result, granular physicists do not have the same framework as fluid dynam-

icists, who can exploit the ubiquitous and well-tested Navier-Stokes equations.

Depending on the mode of deformation, granular material can behave as a gas,

liquid or solid. Indeed, all three phases can exist in a flow simultaneously and

the distinction between the three is not well-defined. Figure 1.3 shows the flow

of ball bearings on a pile and serves well to introduce the three main phases of

granular materials.

It can be seen that the particles at the free surface of the flow form a dilute
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Figure 1.2: Shear-induced segregation in a rotating drum. White particles are larger
than the dark ones. The dynamics in the drum are also affected by the hysteresis
of granular flows via the avalanche instability, and the propagation of a shock up the
interface as the flow arrests. Reproduced from Gray & Thornton (2005).

Figure 1.3: A flow with the gaseous, fluid and solid phases of granular motion present.
Reproduced from Forterre & Pouliquen (2008).
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layer, and the lack of cohesive forces between particles has led to an analogy

with a molecular gas (Lun et al., 1984), taking inspiration from the dense gas

theory of Chapman & Cowling (1939). This assumes that the particles interact

through instantaneous binary collisions as the diluteness of the particles makes

the probability of multi-body collisions vanishingly small. We say that a granular

medium in this mode of deformation is in the kinetic regime. A kinetic theory can

be derived for granular materials and could be used to derive constitutive relations

for this peculiar material. We can do so by defining a granular temperature,

which is a measure of the fluctuations of the particles’ velocity about their mean

(Lun et al., 1984; Campbell, 1990). However, the inelasticity of the particles

complicates the situation significantly, as it leads to the dissipation of energy and

condensation of the gas, unless energy is continually supplied to the ensemble and

therefore the standard thermo- and hydro-dynamic laws are some what modified.

At the base of the flow in figure 1.3, the flow is very slow and the dynamics are

governed by enduring contacts and force chains, caused primarily by the inter-

particle friction. As such, a granular material deforming in this way behaves much

like a plastic solid. Although for static assemblies of granular materials under very

low shear, the assembly responds as an elastic solid (Brown & Richards, 1970).

This is in contrast to the dominant transfer mechanism of binary collisions of

the kinetic regime. A visualisation of the force chains in a system can be seen in

figure 1.4, which uses a monolayer of photo-elastic particles which are placed under

compression. These force chains span the entire system, indicating that a local

rheology may not be capable of accurately capturing the assembly’s behaviour.

It also indicates a strong heterogeneity in the system. The difficulty in emptying

granular media from containers can primarily be attributed to these force chains

bridging over the aperture, causing flow to stop altogether and jamming the

system.

For higher shear rates, the solid exhibits a yield stress which is typical of a

Coulombic nature (de Coulomb, 1773), where the shear stress in a given direction

|τ | is proportional to the normal stress |p|, and yields when the criterion

|τ | = µ|p| (1.1)

is met for some value of µ. This phase of granular materials has been studied in
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Figure 1.4: Force chains in a 2D granular assembly of photo elastic particles under
compression. The particles consist of an elastic disc with a polarising filter on each
face. When the particle is deformed, the filters align allowing light through. Reproduced
from Bassett et al. (2011).

depth by the solid mechanics community and is well described by critical-state

and plasticity theories (Nedderman, 2005; Schofield & Wroth, 1968). We refer to

such slow flows as being in the creeping or quasi-static regime. In addition to

the phases of gas, solid and liquid, grains can also exhibit a slow creeping flow,

analogous to a glass (Jaeger et al., 1989). Deep in a granular pile with a flow

on its surface there are slow agitations that produce an exponential tail to the

velocity profile.

In the region between the kinetic and quasi-static regimes we observe granular

material flowing as a liquid. In this case, the interactions between particles are

governed by collisions, frictional interactions and geometric entanglement of the

particles. This last mechanism can be observed by performing simulations of

frictionless particles and noting that the resultant flow is still found to exhibit a

macroscopic friction coefficient Denlinger & Iverson (2004). Persistent contacts

and force chains can also play a role, as the volume fraction is only slightly less

than that of the solid phase. In a broad sense, dense granular flows can be placed

in the visco-plastic family of materials, as a flow threshold exists and a shear rate

dependence is observed, which gives it a viscous-like behaviour.

This intermediate regime is the one that has been most lacking a satisfactory
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theoretical explanation, with competing theories each having significant draw-

backs. This regime will be the main focus of this thesis. Apart from these

difficulties in describing even an ideal granular material theoretically, the exper-

imental verification of these theories is also beset with numerous complicating

factors. Micromechanical theories invariably place assumptions on the constitu-

tive particles in order to make any analysis tractable. A canonical example of this

is the shape of the particles, which are usually assumed to be mono-disperse and

spherical. Even if a source of truly spherical particles could be found, experiments

are usually conducted with slightly polydisperse mixtures in order to avoid order-

ing and crystallisation (a first-order phase transition to an ordered state) which

are infrequently seen in natural flows. A disadvantage of this is that the parti-

cle diameter, which is one of the important length scales in the problem, is not

well defined, making the comparison to theory more difficult. Spherical particles

are rare in natural contexts; sand and gravel instead are angular and irregular.

Experimental studies typically use either natural sand, which is typically rough

and angular, or spherical ballotini. The dynamics of these two types of particles

can be strikingly different. For example, the use of monodisperse ballotini in

Pouliquen (1999b) suppresses a frontal fingering instability as seen in figure 1.5.

The shape of the particles is known to have an effect on packing densities (Cho

et al., 2006) and can therefore affect the dynamics of the flow. For example, the

yield stress needed to break a static pile of ordered grains is known to be higher

than that for polydisperse grains Bardenhagen et al. (2000).

Other problems with micromechanical models in granular physics are caused

by the a high number of material parameters used. These include, but are not

limited to, the restitution, tangential restitution and friction caused by asperities

on the surface of the grains and particle elasticity. While these can be accounted

for theoretically, accurately measuring them presents a significant experimental

challenge to the point of being unfeasible and they are usually distributions rather

than single numbers. Instead, we typically rely on macroscopically measured

parameters that characterise overall behaviour.

The history dependence, or hysteresis of granular materials also presents a

difficulty for the experimentalist. The preparation of sand before an experiment

is conducted can affect the results greatly. Reynolds (1885) first identified that
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Figure 1.5: A bidisperse granular avalanche exhibits a frontal instability which evolves
into levée-channelized fingers. Also seen is the segregation of the large particles to the
edge of the levée. From the Manchester Centre for Nonlinear Dynamics.

packed grains need to dilate so that they can flow over each other. Indeed, the

volume fraction φ, i.e. the proportion of space that is occupied by the particles,

can greatly affect the dynamics. A mono-dispersed mixture has a theoretical

maximum packing of φmax = 0.74 (face-centred cubic packing) but, in practice,

packings no higher than φrcp ≈ 0.64 (random close packing) are seen. This latter

packing can be approached by taking a sample of granular material and vibrating

or tapping the sample until it compacts. As this happens, the volume fraction of

the material increases as does the yield stress. On the other hand, if a sample

is prepared by sprinkling the sand lightly, then a packing fraction of φrlp ≈ 0.56

(random loose packing) is approached. To reach lower φ, we must input energy

to the flow and the coordination number (i.e. the average number of particles

that an individual grain is in contact with) decreases until we enter the kinetic

regime, in which it approaches 0. The need of the grains to dilate before flowing

can produce shear localisation in some situations in the form of slip bands which

are typically 5–10 particle diameters thick and are largely independent of the

flow geometry. Importantly, the flow thresholds are also strongly affected by

the boundary conditions and, in general, granular flows exhibit many interesting

phenomena when approaching a flow transition. Experimentally, we see that the

velocity does not decrease steadily to 0 but slows down and suddenly freezes.
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Figure 1.6: Two behaviours of a granular jet impinging on a rigid, smooth and flat
surface. Both exhibit a granular jump above the point of impingement. The second
picture also shows a teardrop shaped granular shock. Johnson & Gray (2011)

This is indicative of the traction at the base weakening as the velocity increases,

and is related to the increased strength of the material when it is packed more

tightly (Pouliquen, 1999b). The ability of the flow to arrest is responsible for

a rich variety of phenomena including levée formation and self channelisation of

flows (Delannay et al., 2007; Mangeney et al., 2007) as seen in figure 1.5. One

major effect of this is that it can serve to increase the run-out of an avalanche.

Dense granular flows have a very rich phenomenology, only a small subset of

which is mentioned here. Other effects include shocks or jumps (see figure 1.6),

interfacial Kapitza waves (Forterre, 2006), roll waves (Forterre & Pouliquen, 2003)

and longitudinal vortices (Börzsönyi et al., 2009; Forterre & Pouliquen, 2001)

analogous to Rayleigh-Bénard convection, and many more.
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1.3 Developments

Although granular materials received some attention prior to the 20th century, the

modern field of granular analysis began with Bagnold (1941), who studied and

deduced laws for aeolian transport of sand describing the formation and movement

in the Libyan desert. He used collisional arguments to uncover two fundamental

relations of granular flows, namely that the shear and normal stresses obey the

scalings

τ = ρpd
2f1(φ)γ̇

2 and p = ρpd
2f2(φ)γ̇

2. (1.2)

Here, τ is the shear stress in the granular material and p is the particle pres-

sure, while γ̇ is the shear rate, φ the volume fraction, and ρp the density of a

single particle. The stress on a single particle is proportional to the number of

particles hitting it in unit time, multiplied by the momentum change imparted

by a single collision. As both of these are proportional to the shear rate, and

the projected area over which this momentum transfer happens is proportional to

d2, we recover the forms (for some unknown functions fi of the non-dimensional

φ). However, it must be noted that these relations also arise purely through di-

mensional reasoning, and so hold over a much wider range of circumstances than

originally envisioned by Bagnold. It is from this scaling that the Bagnold profile

of a granular flow in equilibrium gets its name. Such arguments predict that the

volume fraction is constant since in a steady flow the shear force must balance

the gravitational forcing which gives rise to the relationship

τ

p
=
f1(φ)

f2(φ)
= tan θ. (1.3)

In such a flow a hydrostatic balance holds such that the pressure p ∼ z, the

distance from the base. As we have γ̇ ∼ ∂zu, the depth dependence of the

velocity profile is given by

u(z) = A(θ, φ)
√
gd

(
1−

(
1− z

h

)3/2)
. (1.4)
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We note that this 3/2 law is in contrast to the parabolic dependence seen for

viscous flows. The function A also depends on material parameters and boundary

conditions. We shall exploit this profile in our analysis of chute flows in chapter 4.

After Bagnold’s seminal work, the field progressed slowly until the 1980s, with

the advent of two different kinds of models for dry, cohesionless granular materials.

The first family of models fall under the aforementioned kinetic theory and

they attempt to describe dilute granular flows such that the dominant momentum

transfer mechanism is through collisions. They are motivated by the traditional

stochastically-averaged description of classical gases. The canonical paper for the

derivation of this theory is by Lun et al. (1984), although the model was also

developed independently at a similar time by Jenkins & Savage (1983) and Haff

(1983), amongst others. In this model, expressions for the transport of a generic

field by collisional means are deduced together using an analogue for the thermo-

dynamic temperature known as the granular temperature (Ogawa et al., 1980).

This is given by the variation of the grains’ velocities about their mean. A key as-

sumption of the theory is that particle interactions are binary and instantaneous,

which effectively limits the application of the classic theory to low volume frac-

tions — as the average density increases, multi-body interactions become more

common to the point that contacts may persist indefinitely. The pairwise particle

distribution function is supplemented with a dense gas correction in the form of

the radial distribution function. As mentioned previously, a key difference be-

tween granular kinetic theory and the traditional theory is the inelasticity of the

particles — any successful theory must take this dissipation into account. It is

noted that in order for the kinetic description to be valid to real flows for long

times, energy must be supplied to the system or it will condense.

The theory can incorporate a rate-independent stress tensor to include particle–

particle friction effects (Johnson et al., 1990; Anderson & Jackson, 1992; Hutter

& Rajagopal, 1994) and can qualitatively predict the existence of steady, fully

developed flows for a range of inclinations as per the experimental data. One of

the major drawbacks is that direct quantitative comparison with experiments is

difficult since many parameters introduced in the models are hard to measure reli-

ably, and there is a particular difficulty that arises when attempting to formulate

the correct boundary conditions.

13



Chapter 1: Introduction

A number of extensions to the theory have been made over the years including

the effect of particle roughness in two dimensions (Jenkins & Richman, 1985)

and the effect of inter-particle friction (Johnson et al., 1990). However, the latest

incarnations of the theory extend their applicability to higher volume fractions

by assuming an infinite friction between particles and including the tangential

restitution into an effective normal restitution. They also introduce a heuristically

derived correlation length (Jenkins, 2007; Berzi et al., 2011) which accounts for the

overestimation of the inelastic dissipation of the traditional theory at high volume

fractions. This approach gives good agreement with experimental results by Jop

et al. (2005) amongst others, and compensates for the failure of the instantaneous

and binary collision assumptions. We use a version of the traditional kinetic

theory in chapter 5 to describe a volume fraction variation seen experimentally.

We choose to use this as the volume fraction in the sparse regions is low enough

for traditional kinetic theory to be applicable in principle.

The second family of models does not rely on micro-mechanical material param-

eters to describe the flow. Instead, a more phenomenological approach is adopted.

Often, these models are framed in terms of depth-integrated equations of mo-

tion, much like the shallow water or Saint-Venant equations (de Saint-Venant,

1871). Indeed, one of the first papers to take this approach ignored the inter-

nal shear of the material completely (Savage & Hutter, 1989) and so the issue

of defining a stress tensor and the form of the rheology was not encountered.

These depth-integrated flows rely on the horizontal (slope parallel) variations be-

ing much smaller than the vertical (slope normal) variations. We discuss these

models and their assumptions in more detail in chapter 4. Although many mod-

els have been proposed over the intervening years, we choose to concentrate on a

recent model that has had much success in giving good quantitative predictions

for steady flows: the µ(I) rheology proposed by Jop et al. (2006). This rheology

uses dimensional analysis and data from experiments to give a rheology modelled

using a Coulomb friction criterion. We discuss the successes and shortcomings of

the µ(I) rheology in the following chapters.

The addition of computing power to the theoretician’s arsenal over the last 20

or so years has proved to be especially beneficial to the field of granular mechanics.

The combination of the lack of constitutive relations and the physical opacity of
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a typical granular flow means that it is particularly hard to infer the behaviour of

the internal structure of the flow. Simulations in granular flows fall broadly into

two categories. The first is the computation of models with non-trivial boundary

conditions, such as the application of a depth-integrated model over a curved

terrain (e.g. Pouliquen & Forterre, 2002; Denlinger & Iverson, 2004), and serves

primarily as a tool for verifying the model against experimental data. We present

such a simulation in chapter 2. The second class of simulations model individ-

ual particles and their interactions with each other and the boundary directly,

otherwise known as discrete element modelling (DEM). With this class of sim-

ulation, we follow the motion of each individual particle, giving direct access to

otherwise inaccessible fields such as the internal stress and flow structure. This

type of modelling can provide the opportunity to identify important flow mech-

anisms allowing for a suitable phenomenological model to be proposed. These

simulations are dependent on the contact model, but macroscopic behaviours are

qualitatively the same for a broad variety of interactions (Delannay et al., 2007).

These interactions are typically modelled as a spring and dashpot assembly. The

time step used is of the order of 1/20 of a collision time and the simulations are

therefore very computationally expensive (Silbert et al., 2001; Börzsönyi et al.,

2009; Baran et al., 2006; Berzi et al., 2011; Chevoir et al., 2001) and cannot yet

be used to model very large flows.

The experimentalist has also benefited from the introduction of computing

power to the field. At the cutting edge, nuclear magnetic resonance imaging is

used to examine internal velocity and concentration fields of assemblies of grains

(Nakagawa et al., 1993) directly. However, a more common application of com-

puting power in granular laboratories is Particle Image Velocimetry which is used

to accurately and quickly measure the velocities at the surface of a granular ma-

terial. We exploit this technique, along with using an accurate measurement of

the flow height in chapter 4, to draw comparisons with theoretical predictions.

These two fields are essential in describing the dynamics of a gravity driven free

surface granular flow such as the ones we present in chapter 4.
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1.4 Aims and Structure

As we have indicated, the derivation of a comprehensively successful granular

model may not be possible. Existing models have only been tested on a limited

range of experiments and so it is important to see if these models give good pre-

dictions under different circumstances. As an example, nearly all granular models

predict a maximum value for the friction and so they will predict flows that accel-

erate indefinitely on slopes higher than a critical angle. However, this hypothesis

has not been thoroughly investigated primarily on account of the experimental

difficulty of maintaining a flow for a sufficient time to make the multiple mea-

surements needed to track its evolution. We aim to analyse such flows to see if

the prediction of maximum friction is correct using the simple geometry of the

inclined chute. This not only provides a good basis for studying natural gravity

flows such as debris flows and avalanches, but is directly relevant to industrial

transport contexts. As a result, it has formed the basis of many experimental

studies (Ahn et al., 1991, 1992; Patton et al., 1987; Louge & Keast, 2001; Delan-

nay et al., 2007) with a variety of surface conditions. These studies focus on fully

developed flows where all quantities are constant in time and where there is no

flow development down the slope. These are inevitably on shallow angles and for

small flow heights and mass fluxes. It is not clear whether steady flows exist on

higher inclinations or for deeper flows, albeit with a longer relaxation time to the

steady state.

Natural granular flows are rarely found on shallow slopes which would allow

them to quickly reach a steady state. Instead they are often found to be in a dif-

ferent regime to that traditionally examined in the lab. As such the applicability

of existing granular models is limited. It is therefore important that these models

are tested for higher inclinations and deeper flows. It is our aim to quantify how

dry granular flows behave in such a situation, and present and analyse data for

steeper (30◦ < θ < 55◦) and deeper (q < 20 kg s−1) flows than those traditionally

examined in the laboratory.

Chapter 2 describes the µ(I) rheology and the steps leading to its derivation.

We give a numerical solution to the rheology for a chute flow. We give the

details of the experimental design, measurement systems, calibration routines,
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data collection and processing in chapter 3, before presenting our observations in

chapter 4. We also give a comparison with the µ(I) numerical solution, discuss

the cause of any discrepancies, and look for alternate scalings that collapse the

data. Chapter 5 deals with an instability seen in a reasonably large proportion

of our data. For sufficiently fast flows we see two dilute regions appear near the

walls of the chute. We develop a model based on granular kinetic theory to discuss

the mechanism behind the phenomenon. Our conclusions are drawn in chapter 6

where we also suggest directions forward for the questions that this work has not

answered.
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The µ(I) rheology

With the variety of approaches mentioned in chapter 1, it is clear that there is

no consensus on how to model dense granular flows. Indeed, while some models

provide good agreement with one set of experiments, they fail when applied to

others. Moreover, there remain many granular phenomena that remain unex-

plained by any model. Some of these models are complicated mathematically,

derived using microscopic physical reasoning, but have poor agreement with real

flows. Others are phenomenological with no physical grounding at all. Recently,

however, a rheology has been proposed by Jop et al. (2006), which sits somewhere

in between these two categories and uses a combination of dimensional analysis,

macroscopic physical reasoning and experimental curve fitting to posit a simple

and full three dimensional rheology for dense granular flows. We refer to this

rheology as the µ(I) rheology.

In this chapter we introduce this rheology, the experiments which motivate

it, and its application to steady, fully developed flows. We also implement a

numerical solution so that we can compare its predictions to the accelerating

flows we observe experimentally in chapter 4.
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Chapter 2: The µ(I) rheology

2.1 Motivation

The full three-dimensional µ(I) rheology given in Jop et al. (2006) is an extension

of the shallow water model presented in Pouliquen & Forterre (2002), which is in

turn based on phenomenological scaling laws of steady flows on inclined planes

observed in Pouliquen (1999b), which we turn our attention to now.

2.1.1 Friction of a steady flow

Pouliquen (1999b) experimentally determined the variation of the mean velocity

û as a function of the inclination θ, the thickness of the layer h, and the roughness

of the bed: the various non-dimensional groups in this problem enabled him to

construct a flow rule governing the flows. These groups are

Fr =
û√

gh cos θ
, n =

h

d
, θ, (2.1)

which are the Froude number, the non-dimensional height and the inclination

angle respectively. We are assuming that the particles are sufficiently stiff so that

they only dimensional quantities they provide are a length scale d (the diameter

for spherical particles) and their density ρp, with the elastic time scale considered

sufficiently small as to happen instantaneously compared to any time scales for

momentum transfer.

This early work focused on determining the range of parameters for which

steady flows were observed. It was discovered that, on a rough base, there was a

limited region in the parameter space (θ, n) where such flows were observed. For

sufficiently high θ all flows accelerated, and for sufficiently low θ flows came to

rest. For the intermediate inclinations the flow reached a constant velocity and

flow height for a range of flow rates depending on the total mass of the flow. The

results were found to depend sensitively on the basal roughness. However, it was

noted for each of these steady flows, once the mass source had been removed from

the experiment (by shutting the gate at the top of the slope), the flow’s height

slowly decreased along with the velocity, and a deposit of constant height was left

behind. This height was defined as hstop(θ). Figure 2.1 shows typical hstop curves

for varying θ for four combinations of particle and basal conditions, and these are
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2.1 Motivation

Figure 2.1: The function hstop(θ) for 4 particle/basal condition combinations. The
lines are the best fit of equation 2.8 to the data. Figure reproduced from Pouliquen
(1999b).

independent of the flowing conditions used to generate the deposit. Importantly,

this is independent of the velocity of the flow.

The hstop curves have two important features — at an angle θ1 there is an

asymptote, which corresponds to point at which the friction of the system of

grains is greater than the tangent of the inclination. This causes a heap to form,

which effectively has an infinite equilibrium height. The second important feature

is that there is a point θ2 > θ1 where hstop = 0. Above this angle, the gravitational

forcing is greater than the available friction, and no stable deposit can occur.

When plotting the non-dimensional quantities in equations (2.1), no data col-

lapse was observed, however, introducing the length scale hstop allowed the data

to be collapsed very straightforwardly.

The robustness of the scaling can be seen in figure 2.2 which plots the col-

lapse for 4 bead/basal condition combinations over the range of inclinations for

which steady flows were possible. This collapse allows us to bypass any micro-

scopic characterisation of either the base or the granular material itself, as the

information is all encoded in the hstop(θ) function.

With such experiments it is also possible to define another length scale hstart,

which is the height at which the flow will start moving from rest. This is also

found to be a function of the inclination (Mangeney et al., 2007), however it is

interesting to note that hstop 6= hstart, which gives a good indication of the presence

of hysteresis of granular materials and demonstrates a difference between static

21



Chapter 2: The µ(I) rheology

Figure 2.2: û√
gh

as a function of h/hstop(θ) for the four systems of beads over all

inclinations for which steady flows are possible. Reproduced from Pouliquen (1999b).

and sliding friction. It is this difference that is responsible for the avalanching

instability seen in shallow flows on inclined planes.

Using the collapse seen in figure 2.2 motivated Pouliquen (1999b), we introduce

the flow rule
û√
gh

= β
h

hstop(θ)
, (2.2)

with β = 0.136 for the spherical particles that were used in his experiments.

We note that, for angular particles, the flow rule actually takes the form û√
gh

=

α + βh/hstop, and the effects of this will be discussed in section 2.2.

From the scaling property in equation (2.2) some information about the forces

governing the steady flows can be ascertained to give a rudimentary rheology.

Taking a slice of material and balancing the forces acting on it, we can write

τ = ρgh sin θ, (2.3)

where ρgh sin θ is the gravitational forcing which, if the flow is steady, must be

balanced by a basal shear stress, τ . The average density, ρ is given by the particle

density multiplied by the volume fraction, i.e.

ρ = ρpφ. (2.4)

Given that the normal stress at the base (assuming a hydrostatic balance) is

22



2.1 Motivation

p = ρgh cos θ, we obtain a simple friction law

τ

p
= tan θ = µb

(
û√
gh
, n

)
, (2.5)

where the basal friction coefficient is µb.

As the flow slows and approaches arrest, we have by definition that h→ hstop.

As the forces must balance in both a constant velocity flow and a static deposit,

the basal friction coefficient must obey

µb = µstop = tan(θstop(h)), (2.6)

where the angle θstop is defined as the inverse of the hstop(θ) function. As such,

we can write the friction law

µb

(
û√
gh
, n

)
= µstop

(
h
βh
û√
gh

)
. (2.7)

To complete this simple frictional picture, the functional dependence of hstop(θ)

is obtained experimentally. A suitable fit is given by Pouliquen & Forterre (2002)

as
hstop(θ)

d
= B

tan θ − µ2

µ1 − tan θ
, (2.8)

which is specified in terms of the frictional limits µ1 = tan θ1 and µ2 = tan θ2

and a constant B all of which only depend on the material and the boundary

condition. Any form that shares the properties at θ1 and θ2 and is monotonically

decreasing as discussed above will suffice just as well. Combining equations (2.8)

and (2.7) gives a friction dependence of

µ

(
û√
gh
, n

)
=
µ1 + µ2

û√
gh

B
βn

1 + û√
gh

B
βn

. (2.9)

It is important to note at this point that this expression is not a result of properties

of the material bulk, but rather is a manifestation of the interaction between the

material and the basal surface. This functional form, along with some other

mechanisms to handle flows for which h < hstop, is used by Pouliquen & Forterre
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Chapter 2: The µ(I) rheology

(2002) in a shallow water description to predict the spreading of a granular mass

to good effect.

2.1.2 Towards a local description

Although the formulation presented in the previous section gives good agreement

with granular flows on planes in a depth-averaged framework, it cannot be thought

of as a rheology as it only contains the material-boundary interaction encoded

within it. Indeed, applying results derived from plane shear to a generic flow

geometry is not a priori justified. The next step in extending the hstop results

to a full rheology is due to MiDi (2004), who gathered experimental results for

the six most frequently studied granular experiments, as pictured in figure 2.3.

Their goal was to identify features common to all of the experiments, such as

the effective friction and any flow thresholds, with the aim of extracting the

underlying behaviour of the material.

Three scales that influence the flow were identified: a scale over which the

particle–particle interaction occurs governed by the deformation of the grains, a

particle-size scale which governs the local rearrangement of the particles, and the

scale of the system.

They note that, away from flow transitions, the microscopic particle–particle

friction, restitution and roughness have very little effect on the larger scale kine-

matics of the flow (for non-extreme values) and indeed only serve to modify the

effective friction coefficient. This means that, on a local scale, the flow is not gov-

erned by a length scale associated with the deformation or inelastic dissipation of

the particles. For large systems this leaves the particle length scale d as the only

other natural choice for scalings. As such, we take this as an assumption in the

µ(I) rheology.

We assume that in a homogeneous simple shear flow in a large system (such

that the boundaries have negligible influence on the internal flow), the only fields

that govern the flows are the strain rate γ̇, the pressure p, and the shear stress

τ . In doing this, we implicitly assume that the granular temperature T does not

play a role, and therefore the local generation of the kinetic agitations balances

the dissipation. As the only mass in the problem is the particle mass, the flow

is independent of the material density, and no internal stress scale exists. These
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2.1 Motivation

(a) Couette Flow (b) Heap Flow (c) Plane Shear

(d) Rotating Drum (e) Vertical Chute (f) Inclined Plane / Chute

Figure 2.3: Various flow geometries for which the µ(I) rheology has been tested. Re-
produced from Forterre & Pouliquen (2008).
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Chapter 2: The µ(I) rheology

fields strongly constrain the form of any local rheological law on dimensional

grounds (da Cruz et al., 2005; Lois et al., 2005). Combinations of these fields can

produce precisely two dimensionless groups, namely the effective friction

µ =
τ

p
(2.10)

and the parameter

I =
γ̇d√
p/ρ

. (2.11)

We call I the inertial number, defined as the square root of the Savage number or

the Coulomb number which have both been mentioned in the literature previously

and introduced as the ratio of the collisional stress to the total stress (Savage,

1984; Ancey et al., 1999). This non-dimensional number can be described as the

ratio of two time scales at the particle level. These are given by

Tγ̇ =
1

γ̇
, (2.12)

the time taken for a layer of shearing particles to move a distance d, and

Tp = d

√
p

ρ
, (2.13)

a confinement timescale that corresponds to the time taken for the pressure to

push the particle back to its original level after having to move up to pass the

particles below it. The inertial number I is then given by

I =
Tγ̇
Tp
. (2.14)

A graphical description of the two timescales can be seen in figure 2.4. Impor-

tantly, we note that this definition of I only holds for rigid particles as for softer

particles the elastic time scale affects the scaling (Campbell, 2002).

The interpretation of I in this way gives a correspondence between its value and

the type of flow that it characterises. For slow, quasi-static flows, the movement

between layers of particles is slow, whereas the confinement time is relatively fast

as the particles’ inertia has little effect, and therefore I is small. Conversely, flows
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2.1 Motivation

Figure 2.4: Schematic showing the physical meaning of the deformation time scales Tp
and Tγ̇ . Reproduced from MiDi (2004).

with large shear rates such that the particle inertia overcomes the confinement

force, are agitated and (probably) dilute. These flows correspond to a large value

of I.

In the picture painted above, we can also argue that the volume fraction φ

should be a slaved variable of I. Using the timescales introduced above we can

reason for a crude trend as I varies (Pouliquen et al., 2006). By considering the

movement of a single bead over a layer, we can see that the maximum volume

fraction φmax is attained when the particle’s centre is as low as possible, i.e. when

the particle is lying as much as possible in the space between the particles below.

However, when shear is applied, the particle is forced to rise in order to move

over the particles below, thus leaving the empty space until it lies fully on top of

a particle below, at which point the volume fraction attains its minimum φmin.

Given that the typical time for rearrangement is Tγ̇, and the time the particle

stays trapped is Tγ̇ − Tp, the time averaged volume fraction is given by

φ =
Tγ̇φmin + (Tp − Tγ̇)φmax

Tp
, (2.15)

equating to a dependency of

φ = φmax − (φmax − φmin)I. (2.16)
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Chapter 2: The µ(I) rheology

However, this variation of φ is only applicable where the particles are largely in

contact with each other and for small I. This suggests that, as I grows, the flow

will indeed become dilute and the reasoning used above will break down and the

linear relationship will not hold. Typical values are taken as φmax = 0.6 and

φmin = 0.5 (Baran et al., 2006; Pouliquen et al., 2006; MiDi, 2004), indicating

a rather weak dependence over the range of I that has been investigated in the

past.

It has been known since some of the earliest studies of granular media that

granular flows exhibit dilatancy effects when flow is initiated, so that the particles

can slide over one another (Reynolds, 1885). However, once this transition has

occurred, the volume fraction in the bulk changes only weakly. This has been

verified with both simulations (Silbert et al., 2001) and experiments (Louge &

Keast, 2001). At the boundaries, however, some minor but interesting effects still

occur, which we shall discuss in more detail in section 2.2. Despite this, numerous

experimental and numerical studies (Rajchenbach, 2003; Louge & Keast, 2001;

Jenkins, 2007) suggest that the approximation φ = const. is acceptable.

Under the assumption that the rheology is local and governed by the fields

above, the effective friction of equation (2.10) must be a function of the inertial

number, and we may extend our results obtained from plane shear to a general

rheology for granular materials.

However, this new local rheology should produce the experimental scalings

given in the previous section, specifically the basal friction law in equation (2.9).

Our strategy to get the functional dependence of µ(I) is to depth-integrate the

flow assuming this rheology so that we may compare it to the aforementioned

friction law.

The steady plane shear flows for which the basal friction law applies, the force

balance

µ(I(z)) = tan θ (2.17)

must be obeyed. In our coordinate system we take z = 0 at the basal surface and

z = h at the free surface. This implies that I is constant throughout the depth

and is a function of θ alone and therefore constant in a given flow. The definition

28



2.1 Motivation

I

µ(I )

µ2

µ1

0
0

Figure 2.5: A typical µ(I) curve.

of I in equation (2.11) allows us to integrate the velocity profile to obtain

u(z)√
gd

=
2

3
I(θ)

√
cos θ

(h3/2 − (z − h)3/2)

d3/2
, (2.18)

which recovers the Bagnold velocity profile. We now integrate 2.18 once again to

obtain

I =
5

2

Fr

n
(2.19)

Substituting this into the basal friction law (2.9) gives the relationship

µ(I) = µ(I)|z=0 =
µ1I0 + µ2I

I0 + I
, (2.20)

where I0 is given by

I0 =
5

2

β

B
√
cos θ

. (2.21)

This analysis of steady, plane shear flow motivates the choice to take equa-

tion (2.20) as a definition for a rheology applicable to all dense granular flows.

The two parameters µ1 and µ2 are dependent on the material and are given by

determining the range of inclinations for which hstop exists. On the other hand, I0

obviously depends on the flow geometry, but for cases other than plane shear flow

it is not clear a priori what form that this should take. Usually I0 is assumed to

be a constant, i.e. another material parameter. This can be done for steady shear

flows as the dependence on the inclination is rather weak over the limited range

for which steady flows are possible. For experiments with glass beads as used by
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the papers referenced here, I0 is taken to be around 0.3. As we shall subsequently

see, the precise value of I0 will not affect our conclusions of the suitability of the

µ(I) rheology to high speed granular flows. For this reason, we will not dwell on

how this parameter varies.

A one-dimensional rheology capturing the above behaviour can therefore be

stated as

τ = µ(I)p sign

(
∂u

∂z

)
(2.22)

when there is shear present (i.e. ∂zu 6= 0). We have introduced the quantity ∂zu

to ensure that the friction acts to oppose the shear in the material. This one-

dimensional rheology has two important characteristics. Firstly, there exists a

yield stress τ = µ1p, below which no flow is possible. In general, such a threshold

introduces considerable complications to the solution of such a flow: for any areas

where there is no shear, the stresses become ill-defined and depend on the detailed

history of deformation. The shear stress in these areas obeys the inequality

τ < µ1p. (2.23)

To deal with these areas rigorously we can introduce a yield surface along which

the stress balances the yield stress. We then calculate the movement of the plug

region as a whole by considering the stresses on the boundary.

The second characteristic is that µ is bounded above as I → ∞, indicating

that there is a limit to the friction that the granular material can exhibit. Above

this limit, the model gives a strong prediction that, in the absence of additional

forces such as air resistance, the material will accelerate indefinitely. It is the

main purpose of this thesis to see if its predictions hold for higher inclinations

and values of I than previously tested.

2.1.3 Three dimensional rheology

The one-dimensional µ(I) rheology provides a sufficient framework to compare to

the averaged development of flows down an inclined chute. However, it gives no

information about the internal structure of the flow. Jop et al. (2006) generalised

this rheology to a full tensorial formulation to predict both the cross slope and
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depth dependence of the flow on a heap. We take coordinates such that z = 0 at

the base and z = h at the free surface, x increases down the slope and y completes

the xyz right handed triad. The stress tensor (which takes the same form as in

Schaeffer, 1987) is thus given by

σij = −pδij + τij with τij = η(|γ̇| , p)γ̇ij, (2.24)

where p is the pressure, τ the shear stress, δij the Kronecker delta or identity

tensor, and γ̇ is the symmetric strain tensor given by

γ̇ij =
∂ui
∂xj

+
∂uj
∂xi

. (2.25)

We define the modulus or second moment of the strain tensor as

|γ̇| =
√

1

2
γ̇ijγ̇ij. (2.26)

In an analogy to Newtonian fluid mechanics, Jop et al. (2006) introduced a non-

constant viscosity η, which is defined in terms of the friction coefficient defined

in equation (2.20):

η (|γ̇| , p) = µ(I)p

|γ̇| . (2.27)

This indicates that the material is shear thinning i.e. the resistance of the material

decreases the quicker it is deformed. We also note that, unusually, the viscosity

is also a function of the pressure. We generalise the definition of I slightly to

account for the three-dimensional nature of the flow

I =
|γ̇| d√
p/ρ

. (2.28)

In this formulation we recover that the total shear stress is |τ | = µ(I)p as in

the one-dimensional rheology. The tensorial formulation just serves to direct this

frictional stress along the direction of the strain.

The three-dimensional rheology still possesses a yield stress, the only difference

being that the scalar shear stress in the one-dimensional rheology must be replaced
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by its absolute value:

|τ | = µ1p. (2.29)

2.2 Validity

Having derived the above rheology, it is important to discuss how the assumptions

made affect its range of applicability, and whether it can indeed predict salient

flow features. To this end, we will give a brief review of the effectiveness of

the rheology for the flow configurations pictured in figure 2.3. We shall briefly

examine the large body of experimental and numerical work assembled in the

article of MiDi (2004) to understand where the rheology gives good agreement

and where the assumptions used in the derivation break down.

2.2.1 Inclined Plane

It is perhaps unsurprising that the µ(I) rheology gives some of its best agreement

with steady, fully developed flows on an inclined plane, on account of the param-

eters used to fit the friction law being taken from such experiments. As derived

above, the rheology captures quantitatively the Bagnold depth dependence of the

velocity profile (although this also arrives through dimensional analysis of any

local rheology) for deep flows. Since the friction must balance gravity everywhere

in the flow (equation (2.17)), we predict that I is constant and therefore so is the

volume fraction. Tautologically, the flow rule (2.2) is also followed.

Perhaps more interesting are the inclined plane flows for which the rheology

does not predict the correct behaviour. For shallow flows, when h ∼ hstop, the

observed velocity profile is linear, and cannot be predicted by the rheology. The

difference in velocity profiles can be seen in figure 2.6. A plausible explanation

for this discrepancy is the appearance of non-local effects such as force chains

and particle correlations, which add another length scale to the problem, thus

rendering the dependence of the rheology solely on I inaccurate. This is indicative

of a more general behaviour of the µ(I) rheology giving poor agreement near flow

thresholds, which we shall return to a little later.

However, the steady plane shear flow mentioned here is only one very specific

type of flow seen on inclined planes. Although the µ(I) rheology cannot account
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Figure 2.6: Velocity profiles for equilibrium flows on inclinations 12.6◦–36◦ at a fixed
non-dimensional height for a variety of particle species. The flows on smaller inclina-
tions are such that h ∼ hstop and the profiles appear linear. This is possibly due to the
presence of force chains and correlated particle motion violating the local assumption of
the µ(I) rheology. The steeper flows with h > hstop exhibit the predicted Bagnold profile.
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for hysteresis and therefore the avalanching instability, it has been used to good

effect to predict other instabilities, such as the presence of roll waves (Forterre &

Pouliquen, 2003) and levée formation and self channelization (Mangeney et al.,

2007).

2.2.2 Heap flow and Rotating Drum Flow

These two flow configurations are often referred to as surface flows since the

majority of the flow occurs near the surface. These flows are tricky to characterise

as they contain regions where the flow is fluidised and free-flowing on top of

(almost) static regions. Comparing these flows to the conclusions from steady

inclined plane flow, we would expect the µ(I) rheology to agree well in the flowing

region, and less so in the quasi-static regions. Heap flows are formed when sand

is poured in between two plates as in figure 2.3(b). In contrast to the flow over an

inclined plane, the inclination of the free surface is chosen by the system. The flow

is largely localised at the free surface, as the side-walls supply an extra frictional

contribution that stabilises the pile beneath.

Jop et al. (2005) consider the integrated force over a horizontal element that

spans the chute transversely, and is infinitesimal in height. They identify the

three forces acting on it, namely gravity, the friction from the side-walls and

the force due to the vertical shear, which should be given by the µ(I) rheology.

They assume that the element slips against the smooth side-walls and model the

interaction as a Coulomb friction with coefficient µw, i.e. proportional to the

pressure, which is taken as lithostatic. If the chute width is given by W then the

balance between the three gives

0 = tan θ − µw
z

W
− µ(I). (2.30)

This suggests that the frictional contribution to the motion increases deeper into

the pile. Since µ(I) > µ1 in flowing regions, we can calculate a height h below

which this rheology predicts no flow, i.e.

h

W
=

tan θ − µ1

µw

. (2.31)
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Figure 2.7: The flow rule for sand (•) and glass beads (�). Modified from MiDi (2004).

However, careful observations made by Komatsu et al. (2001) indicate that this

depth threshold does not exist. Instead, an exponential tail is seen in the velocity

profile that percolates to the bottom of the pile. However, despite this prediction

of a yield surface within the flow, the µ(I) model with added side-wall friction

gives good predictions of the velocity profile near the surface. The necessity of

including W in the analysis indicates that, strictly, the µ(I) rheology is not valid,

as it is predicated on d being the only relevant length scale in the problem. How-

ever, including the wall friction explicitly gives good agreement with experimental

evidence.

The problem of introducing an additional length scale into the problem can

also been seen in the modification of the flow rule (2.2) for angular particles. In

such a case it takes the form as shown in MiDi (2004)

û√
gh

= α + β
h

hstop(θ)
. (2.32)

The data shown in figure 2.7 show the fit for glass beads flowing over glass beads

and sand flowing over sand. The additional constant α poses a difficulty for the

µ(I) rheology as it demonstrates a dependence of the friction coefficient, not only

on the value of I calculated by values of the fields locally, but also on the non-local
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parameter n. If we equate hstop in equations (2.32) and (2.8), invert in terms of

tan θ and put into equation (2.6) using the definitions for I and I0 above, the flow

rule then predicts that

µ = µ

(
I − αI0B

β

1

n

)
. (2.33)

This means that the rheology as it stands is not able to predict this behaviour for

angular particles, and a local description is no longer strictly valid. We are unable

to express the rheology locally in terms of I as the boundaries of the flow become

important, and therefore d is no longer the sole length scale in the problem —

it is supplemented in this case by a system size field n, the dimensionless flow

height.

2.2.3 Confined Flows

The three classes of confined flows investigated by MiDi (2004) are the vertical

chute, plane shear experiments and Couette flow. The canonical experiment for

rheological studies is plane shear on account of its geometrical simplicity. The

presence of gravity is a complicating influence, causing the shear to be unequal

across the system and so many studies are carried out numerically (Aharonov

& Sparks, 1999; da Cruz et al., 2005, e.g.). Typically, the experiments fall into

two categories: fixed volume, where the distance between the shearing plates is

fixed, or fixed force, where the distance between the plates is changed in order to

maintain a constant pressure.

The force balance in gravity-free plane shear means that the pressure and shear

stress are constant throughout. As a result, I, and therefore µ, are also constant

across the chute, and the velocity exhibits a linear variation. This analysis holds

well for moderately quick flows, however, for higher values of I, slip develops

at the wall and an inflection point appears in the velocity profile, indicating a

complex boundary effect which the µ(I) rheology is unable to capture.

For the vertical chute and Couette flows, the µ(I) rheology also runs into prob-

lems with the behaviour at the boundaries. In both of these cases, the shear is

localised in bands near the boundaries with a shear-free region elsewhere. In ver-

tical chutes the µ(I) rheology predicts a dependence of the shear band thickness

on the velocity but in practice this has a fixed width of around 5–10 d regardless
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of the velocity and set only by the inclination and the wall roughness. The mis-

estimation of the shear bands is a clear indication that the local model cannot

accurately capture the transition from a flowing to a static or plug region. The

appearance of these plug-like regions implies a large particle correlation and the

presence of force chains spanning the system. Under these circumstances, the lo-

cal assumption breaks down and therefore I is not the appropriate dimensionless

number to describe the problem.

2.2.4 Discussion

As we have seen, although the rheology gives good quantitative agreement with

a number of experiments, there are several areas where its predictive ability is

weak. The assumptions used in the derivation of the rheology give a good idea

as to where the model will be valid.

The six control geometries used in MiDi (2004) indicate that the model performs

well far away from shear-free areas. This is to be expected for two reasons: the

stresses are only well-defined when their history is taken into account in shear

free regions, and the local assumption is broken as the correlation of the particles

approaches the system size. In general, free surface flows with no static regions

match closely with the predictions. This should be no surprise as the material

properties µ1, µ2 and I0 are measured for such flows. Even within the inclined

flow from which they are derived, I0 is a weak function of the inclination. Asking

these parameters to predict the flow in a completely different geometry is perhaps

too much — it is possible that the confined flows would benefit from a different

choice of these parameters.

A strength of this model is its mathematical simplicity and experimental acces-

sibility — it does not require the measurement of many microscopic parameters.

Indeed, it is with great difficulty that even a simple parameter such as the co-

efficient of restitution is measured reliably for irregularly shaped particles. The

influence of many of these parameters is simply encoded within the hstop and µ

functional dependencies. However, it is perhaps regrettable that the rheology is

not derived from micro-physical principles, but there is some consolation as this is

a distinction shared with even viscous flows which are extremely well understood

in comparison.
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Even within the framework set out above, the precise functional dependency of

µ is somewhat arbitrary as it stems from the character of the hstop curve (2.8),

whose only salient features are that there is an asymptote, a root and a continuity

between the two. These constraints leave a certain amount of freedom to choose

the fit function. Originally, Pouliquen (1999b) chose an exponentially decreasing

function for hstop but that was revised subsequently (Pouliquen & Forterre, 2002,

e.g.) to a rational function of tan θ. This does not make a huge difference in the

subsequent analysis for dense flows, but serves to simplify the algebra somewhat.

For high values of I, such flows will be more sensitive to the precise shape of the

µ(I) curve, but primarily we shall not be considering these flows.

Flows that are near a transition appear to be poorly predicted by the µ(I)

rheology. At one extreme, slow, quasi-static flows often have shear bands and, in

general, the scaling of their width is not correctly predicted by the model. At the

other extreme, the transition to a kinetic flow at high I cannot be predicted by this

rheology. This is no surprise as the constitutive relation (2.15) has not been com-

pared with data at high inertial number and so the volume fraction dependence

for high I is not known. Indeed, the high energy flows exhibit a dependence on the

particle–particle coefficient of restitution and an elastic timescale, thus rendering

the µ(I) model ineffective (Pouliquen et al., 2006).

However, the comparison with dense flows presents a different picture. Unless

shear localization has occurred, the model gives good agreement with experi-

mental observations. The appearance of regions that are static indicates a zone

over which a transition occurs. The model as it stands is ill-prepared to deal

with such features. This should come as no surprise, as the flow law (2.2) only

applies to flows with h > hstop and therefore Fr > β. Should the flow near this

threshold, non-local effects are apparent as the flow arrests and a network of force

chains develops. Pouliquen & Forterre (2002) extend the friction law to deal with

quasi-static flows in a depth integrated framework effectively, but the choice of

this extension is arbitrary, and simply provides a smooth transition to the static

state, allowing numerical computation. Despite this problem, Mangeney et al.

(2007) give good qualitative predictions of the levée formation in debris flows.

Another signal of the difficulty of dealing with shear-free regions can be seen in

the difference between θstart and θstop. A stationary granular assembly on an in-
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clined plane will need to be raised to an inclination θstart > θstop before it starts

flowing, but the inclination can be subsequently reduced and the flow maintained.

A similar effect can be seen in Couette flow, where the rotation rate required to

maintain a flow is less than the rate required to initiate it. The ideal friction

criterion used in the model cannot predict this hysteresis as it has no awareness

of the history of the sample. Generally, these flow transitions are affected by

the system size, a signature of non-trivial finite-size and boundary effects that

are not well understood. As a result, the avalanching instability seen in rotating

drum granular flows and shallow granular flows on an inclined plane cannot be

predicted using this approach. It is likely that this metastability of granular flows

will require a biphasic description of the strong (force chains) and weak (colli-

sions, friction) forces in order to accurately resolve this flow behaviour (Deboeuf

et al., 2005).

In summary, the steady laterally uniform flow regime of granular materials

down inclined planes has been largely characterised over the small range of angles

θ1 < θ < θ2, however, the application of the knowledge gained from these steady

flows to ones on higher inclinations is an unresolved issue — one that we turn our

attention to now.

2.3 Application to steep chute flows

While the µ(I) rheology has been analysed for a plethora of steady, fully developed

flows, we arrive at the focus of this thesis: the application to flows for inclinations

θ > θ2. Due to the mathematical complexity of the µ(I) equations, it is necessary

for investigations to be of a numerical nature as very limited analytic progress

can be made. We present a simple first order finite volume numerical scheme to

examine the full three-dimensional structure of the flow, with a view to compare

the predictions to the experimental data presented in chapter 4.

2.3.1 Problem Formulation

We make three assumptions on the nature of the flow, the first being the assump-

tion of constant density. Experimental studies such as Louge & Keast (2001) and
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Rajchenbach (2003) show no large density differences within the flowing layer.

This is also seen numerically in simulations such as Silbert et al. (2001). Indeed,

there were only small differences between the volume fraction in static and flow-

ing regions and we therefore assume that φ ≈ φrcp. It is noted that the granular

medium does become dilute close to the free surface (partly because of velocity

fluctuations there), however, this layer is very thin (as confirmed by our own

experimental observations). Therefore, to the first order, we assume that this

variation of density is not essential to describing our flow.

The second assumption is that the flow in the chute has no flow in the transverse

or y direction, i.e. u = (u, 0, w), where u and w are both functions of all three

position components. This has the consequence that we ignore any secondary

circulation flows. Our experimental data suggest that these effects are small

compared to the mean flow; the y-velocity at the surface is of the order of 1%

of the downstream velocity. Forterre & Pouliquen (2008) also report that cross

slope velocities for such flows are very small. The third assumption, which is also

experimentally motivated, suggests that the flow is steady in time but develops

as a function of x. We therefore take ∂t = 0.

Using these assumptions, we can write the local conservation of mass

∇ · (ρu) = 0 (2.34)

as
∂u

∂x
= −∂w

∂z
. (2.35)

The momentum balance is given by

∇ (ρuu) = F +∇ · σ. (2.36)

where uu is the dyadic product of u with itself. Then, using the µ(I) represen-

tation for the stress tensor in equation 2.24, the x, y and z momentum balances
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are given by

ρ

(
u
∂u

∂x
+ w

∂u

∂z

)
= ρg sin θ − ∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (2.37)

0 = − ∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

, (2.38)

ρ

(
w
∂w

∂z
+ u

∂w

∂x

)
= − ρg cos θ − ∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

, (2.39)

respectively.

In addition to these, we also have an integral condition specifying the global

mass flux:

q =

∫∫
ρu dA = Wρûh, (2.40)

which is constant down the slope.

At this point, we can simplify the algebra of the problem considerably by ex-

ploiting two different length scales of the flow. The first is h, which gives the scale

over which the flow varies vertically. The second is a characteristic length scale

L over which the down stream velocity develops. This is calculated by forming

a crude balance of the advective acceleration and the gravitational forcing minus

the friction contribution, i.e.

u2

L
∼ g cos θ (tan θ − µ) , (2.41)

giving

ǫ =
h

L
∼ Fr−2 (tan θ − µ) . (2.42)

Provided that ǫ≪ 1 we can make considerable simplifications to equations (2.37),

(2.38) and (2.39). Our experimental evidence presented in chapter 4 in figure

4.7(a) shows that the flows we consider have 5 < Fr < 25 and 0.8 < µ/ tan θ < 1,

equating to a value of ǫ of no more than 0.01, and typically much smaller. Also

assuming that W ≪ L, we can neglect the derivatives on the left hand side

of (2.39) as well as all of the stress tensor terms, thus leaving the hydrostatic

balance

p = ρg(h− z) cos θ. (2.43)
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This approximation is usually termed the long-wave approximation, and is used

by Savage & Hutter (1989); Gray et al. (2003); Mangeney et al. (2007) and many

others.

As we have assumed that there is no lateral velocity v in the µ(I) rheology we

may neglect the shear tensor derivatives in the y-momentum balance (2.38). As

such, we have that
∂p

∂y
= O(ǫ), (2.44)

and so h = h(x)(1+O(ǫ)) using equation (2.43), i.e. just a function of x and not

the cross-chute coordinate y. We may therefore treat h as equal to its average

value as specified by equation (2.40). This small cross-chute variation of h is in

accordance with our experimental observations. Under this condition, according

to (2.40)

h =
q

Wρû
(2.45)

The x momentum equation is also simplified considerably by the long-wave

approximation. The stretching stress term τxx,x can be neglected as ∂xτxx ∼
ǫ2∂zτxz. The contribution due to wx in the term τxz,z can also be neglected.

Lastly, we can also neglect the stress given by the downstream pressure gradient

since ∂xp ∼ ρg∂xh ∼ ǫµρg ∼ ǫ∂zσxz.

With these simplifications, the balance of vertical momentum is then given by

the hydrostatic pressure balance and the downstream momentum by

ρ

(
u
∂u

∂x
+ w

∂u

∂z

)
= ρg sin θ +

∂τxy
∂y

+
∂τxz
∂z

. (2.46)

The long wave approximation also simplifies the computation of the shear stress

and the inertial number as

|γ̇| =
√
∂yu2 + ∂zu2 +O(ǫ) (2.47)

To complete the description of the problem we must specify the basal and side-

wall boundary conditions. For the basal condition we simulate a rough surface by

applying a no-slip boundary condition, while for the side-walls a Coulomb friction

is applied with coefficient µw and so a slip velocity is permitted. The side-wall

42



2.3 Application to steep chute flows

condition can be written as

τxy = −µwpu/|u|, (2.48)

where µw is a constant taken from hstop measurements over the perspex wall

material (µw = 0.45).

Care must be taken at the free surface as the highest derivative in equation

(2.46) is multiplied by zero. The equation is therefore singular and first order

there, and no boundary condition is necessary. However, as σ ∝ p, the surface is

stress-free which is the boundary condition we would normally expect to apply.

This leads to the behaviour of I near the free surface being complicated and

warrants further investigation. If we assume a Bagnold depth dependence near

the surface then
∂u

∂z
=
IBag

√
zg

d
, (2.49)

for some constant IBag, which is the value of I in a 2-D pure Bagnold flow. If, in

addition to this, there is a cross slope variation near the surface then

I =
d√
zg

√(
∂u

∂y

)2

+

(
∂u

∂z

)2

=

√
d2

zg

(
∂u

∂y

)2

+ I2Bag, (2.50)

implying that I → ∞ as z → 0 at the free surface, if ∂yu 6= 0. The thickness of

the boundary layer over which the y-variation in I decays to IBag is given by

z =
d2

I2Bagg

(
∂u

∂y

)2

. (2.51)

We do not attempt to resolve this boundary layer in our simulation as µ re-

mains finite and is multiplied by p = 0 at the surface, meaning that the stress

remains well-defined everywhere. Because we are using a finite volume method,

the stresses on the top edges of the top cell are zero even though I is infinite since

µ is finite and p = 0.

Since the only x gradient in the problem is the first term on the LHS of equa-

tion (2.46) we can treat the problem as an initial value problem in x. Ordinarily

this marching of u would be done in the variable t, but instead we march u2 with
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the variable x. In this formulation we therefore require an initial condition.

The initial condition requires specifying u(0, y, z) but, experimentally, only the

initial velocity at the surface u(0, y, h) can be measured. As such, the depth de-

pendence of the velocity profile is unknown and can be treated as a degree of

freedom with which to fit the numerical results to the experimental data. Ex-

perimentally, to begin with, there is little y-variation of the velocity profile. For

this reason, the initial condition is chosen to be a near-plug flow with the value

of the mean velocity slightly less than the first recorded experimental measure-

ment. This was done to allow the effect of the initial condition to be minimised

before the flow is quick enough for comparisons to be made to the experimental

data. There is a small amount of shear introduced in the initial profile to avoid

convergence issues in the near-static regions. Other initial conditions based on

the shape of the experimental velocity profile have also been tried, but the shape

of the results are largely similar after around 1m of travel. Unsurprisingly the

average velocity of the initial condition will have a larger effect on the velocities

at a given x as the mass accelerates down the slope.

2.3.2 Numerical Method

To solve this problem numerically a staggered grid scheme is used to discretise

the velocity and calculate the appropriate derivative quantities, otherwise known

as a finite volume scheme. The computational domain is split up into a rectilinear

grid of NM cells of equal size where N is the number of cells in the y direction

andM is the number of cells in the z direction. We then introduce the discretized

grid coordinates

yn =

(
n− 1

2

)
δy (2.52)

zm =

(
m− 1

2

)
δz (2.53)

where δy = W/N and δz = h/M . The cell centres depicted in figure 2.8 are

then given when n,m ∈ N in the range 1 ≤ n ≤ N and 1 ≤ m ≤ M . The

basal boundary and the free surface are given by m = 1/2 and m = M + 1/2

respectively, and the side-walls by n = 1/2 and n = N +1/2. The boundaries are
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Figure 2.8: Depiction of the cell structure and differentiation schemes used in the
finite volume method for solving the µ(I) rheology for a chute flow.

therefore half a cell away from the nearest point at which velocity data is stored.

The velocity is centrally differenced to give the derivative quantities uz ≡ ∂zu

and uy ≡ ∂yu at the cell boundaries i.e. on a grid offset by half a cell’s width and

height from the velocity data. The differentiation scheme is shown pictorially in

figure 2.8 and in table 2.1. Since we require both uz and uy on all midpoints of the

staggered grid two different differentiation stencils must be used. It can be seen

that uy at the point shown in figure 2.8 must necessarily have a total of 4 velocity

points to calculate the derivative, where uz in the figure only requires two. This

can be seen in more detail in table 2.1. The derivative quantities calculated on

the cell boundaries are used to calculate the stress tensor σ, which in turn is

centrally differenced to give the divergence of σ at the cell centres. This is the

rheological contribution to the change in velocity as x increases.

As we do not store velocity information on the boundaries of the numerical

domain, we must extrapolate where appropriate to calculate derivative quanti-

ties there. In order to maintain the accuracy of derivatives there a quadratic

extrapolator was chosen of the form shown in table 2.1. For the side walls, this

extrapolator uses three velocity points in the y direction to extrapolate to the side

wall. For the free surface we follow a similar routine but instead take the three

points in the z direction as the data for the extrapolation. As there is a no-slip

condition at the basal surface, we impose u = 0 there and calculate derivatives

appropriately.

Care must also be taken in regions where |γ̇| = 0 as the stresses are ill-defined
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Discretization

un,m = u(yn, zm)

Internal derivatives

un,m+1/2
z =

1

δz

(
un,m+1 − un,m

)

un+1/2,m
z =

1

4δz

(
un+1,m+1 − un+1,m−1 + un,m+1 − un,m−1

)

un+1/2,m
y =

1

δy

(
un+1,m − un,m

)

un,m+1/2
y =

1

4δy

(
un+1,m+1 − un−1,m+1 + un+1,m−1 − un−1,m−1

)

Boundary derivatives (4 point stencil)

u1,m+1/2
y =

1

3δy

(
u2,m+1 − u1/2,m+1 + u2,m−1 − u1/2,m−1

)

un+1/2,1
z =

1

3δz

(
un+1,2 − un+1,1/2 + un−1,2 − un−1,1/2

)

Boundary derivatives (2 point stencil)

u1/2,my =
2

δy

(
u1,m − u1/2,m

)

un,1/2z =
1

δz

(
un,1 − un,1/2

)

Quadratic extrapolator

u1/2,m =
15

8
u1,m − 5

4
u2,m +

3

8
u3,m

Table 2.1: Numerical differentiation schemes for calculating the derivatives on the cell
boundaries and the quadratic extrapolator used at the edge of the computational domain.
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γ̇

σ

0

0

Without Regularisation
With Regularisation

Figure 2.9: Regularisation of shear stress at zero strain.

and equation (2.24) becomes an inequality there. For such regions to start shear-

ing, the yield stress τ = µ1p, which is implicitly defined in the rheology, must

be overcome. Full resolution of these areas would require tracking a yield surface

and calculating the forces acting at the boundary of the shear free region and

considering the region as a rigid body. However, as these regions are small com-

pared to the bulk of the flow, this added complication gives a negligible increase

in accuracy at the expense of considerable computational complexity. We can

therefore relax this condition by introducing a small regularisation parameter ε

such that

|γ̇| =

√(
∂u

∂z

)2

+

(
∂u

∂y

)2

+ ε2. (2.54)

This has the effect of removing the yield stress µ1P and placing an upper bound

on the effective viscosity of the material (νeff = µP
ε
) . As a result, a small creep

velocity appears in regions that would otherwise be static. A similar procedure is

followed with the absolute value of the slip velocity used in the calculation of the

wall stress to aid convergence, whereby |u| is replaced with
√
u2 + δ2 for another

small parameter δ.

Using the grid system defined above, the inertia on the left hand side of equa-

tion (2.46) can be further simplified. Using the grid with a scaled z coordinate
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such that s = z/h(x) allows us to write

∂u

∂x

∣∣∣∣
z

=
∂u(x, h(x)s)

∂x

∣∣∣∣
s

− s

h

∂u

∂s

∣∣∣∣
x

dh

dx
. (2.55)

Then, using the local conservation of mass

w = su
∂h

∂x
− ∂

∂x

[
h

∫ s

0

u(x, s) ds

]
, (2.56)

gives the inertia of the element as

ρ

(
u
∂u

∂x

∣∣∣∣
z

+ w
∂u

∂z

∣∣∣∣
x

)
= ρu

∂u

∂x

∣∣∣∣
s

− 1

h

∂u

∂s

∣∣∣∣
x

∂

∂x

[
h

∫ s

0

u ds

]∣∣∣∣
s

(2.57)

in this scaled coordinate system. The second term on the right hand side of this

equation is written in terms of the partial mass flux h
∫ s
u ds. As such, the

derivative takes the value 0 at both the base, where the partial mass flux is 0,

and the free surface where, since there is no cross slope velocity, the total mass

at a given y-coordinate is fixed. As the Lagrangian description of the flow is

captured by the first term, we elect to ignore the second term in the subsequent

analysis. We also note that, if the flow field is separable, then this integral term

is automatically 0.

In this formulation we are essentially treating x as a modified time coordinate.

In a usual application of an initial value problem we use the time coordinate to

look at the evolution of the initial condition. In our case we use x as a modified

time coordinate such that the typical ∂tu ∼ 1/2∂xu
2. This allows us to use built-

in MATLAB solvers for the problem. However the standard solvers had difficulty

in producing solutions for the resultant system of equations due to the stiffness

in the system. Instead, we use a specialised solver ode15s which is a first-order,

multi-step, stiff ODE solver. This gave rapid convergence to the solution.

The numerical approach was as follows:

1. Extrapolate velocity field quadratically half a grid space to the boundaries;

2. Substitute in velocity boundary conditions;

3. Calculate height using mass flux;

4. Calculate derivative quantities and stress tensor using central differences;
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Figure 2.10: The development of the height and the average velocity of the flow as it
progresses down the slope. Panel (a) shows the development of the height and panel (b)
shows the development of both the average velocity û and the average surface velocity
us. The parameters used for the flow were θ = 38◦ , q = 17.8 kg s−1 , µ1 = 0.54 ,
µ2 = 0.68 , I0 = 0.3 and µw = 0.45. The grid had 20 divisions in the z direction and
60 in the y direction.

5. Substitute in the stress boundary conditions at the walls;

6. Take divergence of the stress tensor;

7. Use ode15s to calculate velocity field for chosen x values.

The strong non-linearities in the problem obstruct the use of high order dis-

cretization schemes and, in particular, a pseudo-spectral Galerkin method pro-

duced solutions that degenerated into noise after a few iterations.

2.3.3 Numerical Results

Figure 2.10 shows the development of the height and mean velocity of a typical

flow at an inclination just above the maximum friction angle (θ > θ2). As ex-

pected, we can see that the flow accelerates and thins. Figures 2.11 and 2.12 show

the internal properties of the same flow at a point x = 3.5m. The velocity profile

in figure 2.11(a) agrees qualitatively with expectations; the velocity is greatest

at the free surface, and decreasing toward the boundaries. The profile of I in

figure 2.11(b) has some interesting features. There are a number of high I zones:

the centre of the base, the upper portion of the side walls and the boundary layer

near the free surface, where the inertial parameter is infinite (and so not plot-
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Figure 2.11: Results of a simulation at θ = 38◦ and q =17.8 kg s−1, 3.5m after release.
Each panel shows the values of a field in a cross section of the chute. The boundary
layer in panel (b) can not plotted as I is infinite on the top row of cells. An increase
in resolution of approximately 100 times would be necessary to visualise the boundary
layer in I. The final panel shows the velocity normalised by the velocity profile u(y, z0)
and demonstrates that the resulting velocity field is non-separable. The parameters used
are µ1 = 0.54 , µ2 = 0.68 , I0 = 0.3 and µw = 0.45. The height was calculated as
h = 0.017 = 17d. The resolution was 60 cells wide by 20 cells deep.
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Figure 2.12: Derivative quantities of the numerically calculated velocity profile at θ =
38◦ and q = 17.8 kg s−1, 3.5m after release. Same parameters as figure 2.11 are used.
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Chapter 2: The µ(I) rheology

ted). Using numerical data, we can use equation (2.51) to estimate the size of the

boundary layer. A typical value for uy at the surface for the simulations presented

in figure 2.11 is 1, meaning that the boundary layer has size z/d = 0.02. The

maximum value of uy at the surface is higher at 44 but is concentrated very near

the walls, where the assumption of a Bagnold background profile, and therefore

equation (2.50), is invalid. This length scale is too small to affect the grains for

the size of the flows investigated here. This is to be expected as a large change

in I only elicits a small change in µ(I) and therefore σ, since µ → µ2. This can

be seen in figure 2.11(c). The resolution of the simulations presented here would

need to increase by an order of around 100 to smoothly capture the change in I

over this boundary layer. As such, the top row of cells in figure 2.11(b) represent

those with infinite I and therefore are not plotted.

Figure 2.11(d) shows the velocity field normalised by the transverse profile

taken at some arbitrary depth. Since the profiles are not just constant multiples

of each other, the functional form of the velocity is not separable, i.e. it cannot

be represented by the form u = U(x)f(y)g(z), meaning that the transverse and

depth effects are intimately related.

Figure 2.12 shows the smoothly changing derivatives of the velocity field used

in the calculation of I and the stress tensor σ. We note that from figure 2.10 if we

take values for us and h at 3.5m down the slope then the average vertical shear

is 200 s−1. Figure 2.12(c) shows that most of the vertical shear is concentrated in

a thin zone near the base and so the frictional losses are highest there.

Integrating the µ(I) rheology over the width of the chute and the height of the

flow, we can formulate a total friction with contributions from the basal friction

and the wall friction:

µ = µw

h

w
+ µb. (2.58)

Using this representation it is clear that, as the flow accelerates and thins, the

friction decreases. This total friction is the characteristic friction that we can

measure by looking at the development of the averaged surface velocity in our

experiments. Figure 2.13 shows the total friction for calculations carried out with

the same mass fluxes and inclinations as our experimental data, showing that the

largest values of µt are never much larger than µ2. A fuller comparison between

the two will be carried out in chapter 4.
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Figure 2.13: Numerical simulations of the total friction µ on a rough base with µ2 =
0.68 and µw = 0.45. The friction decreases as the flow thins and the frictional force
from the wall gets smaller.

2.4 Conclusions

In this chapter we have described the µ(I) rheology and shown how it was mo-

tivated from inclined plane experiments. We have discussed the subsequent de-

velopment of a tensorial, 3D theory to formulate a rheology that is usable for a

general granular flow. We have assessed the validity of the rheology, and found

that it generally gives good agreement with experimental data for flows that are

not affected by boundary interactions, or near to the quasi-static or kinetic lim-

its. We have developed a first-order finite volume code in order to produce the

velocity profiles for a material obeying the µ(I) rheology in a chute, so that it

may be compared to the experimental observations in chapter 4.
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Experimental Preparation

3.1 Introduction

This chapter covers the design and operation of the recirculating chute used to

collect the experimental data presented in this thesis. As mentioned in chapter 1,

in order to investigate a developing flow it is necessary to take measurements at

multiple times and/or multiple points along the direction of development. Tra-

ditionally the length of time for which measurements can be made is dictated by

the amount of material stored in the apparatus, which at high flow rates means

that the available time is very short — a primary reason why previous studies

have focussed on steady, fully developed flows. For our chute, this problem is

solved by using a recirculation mechanism which supplies a steady flow of mate-

rial and is isolated from the conditions in the chute. The technical details and

methodology of the instrumentation and calibration routines used to collect data

are also described in this chapter.
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3.2 Chute Design

3.2.1 Overview

Our flows are generated by the equipment shown in figures 3.1 and 3.2. A crucial

feature of the apparatus is the recirculation mechanism. The recirculation process

starts with roughly 2000 kg of sand at rest in the collection hopper (A). This is

fed to a screw conveyor (B) which, when operating at its maximum capacity, can

move 22 kg s−1 of material to the bucket conveyor (C). This lifts the material 6m

vertically to the feed hopper (D). The feed hopper contains an overflow pipe (G)

that ensures a constant head of sand is maintained. This is necessary to ensure a

constant flow rate since our hopper is too small for the exit conditions to be fully

governed by the Janssen effect (Janssen, 1895). The exit of the hopper consists of

a rectangular aperture of width 225mm and of variable length which is controlled

by a screw attached to a pulley. The angular position of the screw is given by

a digital rotary encoder with one degree of rotation equivalent to 0.0139mm of

linear travel, giving very fine control over the aperture geometry. The aperture

length can be anywhere from fully closed to 225mm at its maximum. The sand

falls freely from the aperture onto the chute (E) so that the conditions inside the

chute do not affect the mass flow rate. The chute is mechanically isolated from

the recirculation system so that vibrations do not affect the flow of the sand or

the measurements. The inclination of the chute can be varied from 15◦ to 55◦ and

is measured to an accuracy of 0.1◦ by a digital inclinometer. There were small

variations in the inclination along the chute of around 0.1◦ due to it flexing under

its own weight. The chute itself is 4m by 0.25m, of which the entire width and

3m of length are observable experimentally. Whilst in the chute, measurements

are made by instrumentation mounted on a hand operated traverse (F) located

above. Finally, the sand falls freely from the chute onto the return chute (H)

which deflects the sand back into the collection hopper. The machine is enclosed

to contain dust and there is an extensive ventilation and filtering system which

removes the finest particles from the material and the air in the laboratory.
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pivot point

Figure 3.1: A diagram of the chute and the recirculation mechanism. (A) Collection
Hopper (B) Screw Conveyor (C) Bucket Conveyor (D) Feed Hopper (E) Chute (F)
Instrumentation and traverse (G) Overflow (H) Return Chute.
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Figure 3.2: Photograph of the Apparatus, including the recirculation mechanism, chute
and instrumentation. The dust containment system has been partially removed for clar-
ity.

58



3.2 Chute Design

3.2.2 Recirculation Mechanism

The recirculation mechanism consists of two main components — the bucket

and screw conveyors. The screw is used to move the sand laterally from the

collection hopper at the bottom of the chute to the base of the bucket conveyor.

Over this distance, the sand is also lifted vertically around 1m so that it may

fall into the up-going buckets. The screw is powered by a user-controlled motor

rated at 22 kW. The user can alter the mass flux of the screw from 1 kg s−1

up to 22 kg s−1 in intervals of less than 5 kg s−1 by means of a control panel.

Fine control over the mass flux is via the hopper exit geometry. The designed

maximum throughput for the screw is 36 kg s−1, but it is limited to 22 kg s−1 to

increase longevity and minimise the impact of any overflow that may occur in the

chute for lower inclinations.

The bucket conveyor system which lifts the sand through around 6m vertically

is powered by a 11 kW motor and is capable of moving 40 kg s−1 of material from

the screw conveyor to the hopper. The speed of the buckets is not controllable

by the user and operates at a fixed rate such that a maximum flux of 30 kg s−1

could be moved. Setting the bucket flux above the maximum flux of the screw

conveyor avoids the problem of the buckets overfilling. This can lead to the bucket

enclosure filling with sand and jamming the recirculation mechanism.

3.2.3 Hopper and Initial Conditions

Design

After the recirculation mechanism, the sand enters the hopper before entering the

chute. The hopper’s design is therefore critical in ensuring that the flow in the

chute is as uniform as possible whilst maintaining isolation between the sand in

the chute and the rest of the apparatus.

A large hopper can help with maintaining isolation between the hopper’s exit

flow and conditions at the top of the bulk where, in our case, there is a periodic

forcing generated by the impact of the sand falling from the buckets. Another

advantage of having a large hopper has been known since the earliest systematic

studies of granular behaviour. Even before the study of Janssen (1895), after

whom this effect was named, it was known that the pressure at the base of a hop-
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per was a weak function of the total amount of material above the exit. Janssen

found that the frictional nature of the grains caused the hopper walls to bear

some of the particles’ weight (in contrast to the behaviour exhibited by a liquid)

and that the bottom pressure tends to a limit as the total mass in the hopper

increases. Since the mass flux q out of the hopper must be a function of the

stress state, and therefore the pressure at the exit, Janssen’s observation there-

fore means that if the material is sufficiently deep, the flow out of the hopper

is independent of the amount of granular material stored above it. Nedderman

et al. (1982) review a number of studies for different grains, which give estimates

of the depth needed to reach this threshold. These are all of a similar order of

magnitude: the height of the material should be of the same order of magnitude

as the aperture size. From this point of view, the larger the hopper the better.

However, the laboratory housing the chute has a finite height and restricts the

maximum size of the hopper. We are faced with a compromise as the smaller the

hopper, the longer the chute can be, and the larger the range of inclinations can

be studied. To balance these two considerations, the hopper’s final height was

chosen to be around 5 times the maximum aperture width. This gave a good

range of available inclinations, whilst ensuring that the exit flow has only a weak

dependence on the total mass in the hopper.

To increase the length of the observable chute whilst allowing the top of the

bucket conveyor to be packaged, an asymmetric hopper design was chosen, with

the entry point for the sand not directly above the exit. This had the slight

complication of inducing non-symmetric velocity profiles at low flow rates, as well

as introducing large static zones into the hopper. The solution to these problems

is discussed later. The final hopper design can be seen in figure 3.3.

The introduction of an overflow pipe into the hopper removed the problem of

the exit flow’s dependence on the mass in the hopper completely as it maintains

a constant head at all times. Sand in the overflow goes directly to the collection

hopper at the base of the chute, where it is recirculated. It also removed the

risk of the hopper overflowing, which could cause lasting damage by jamming the

bucket conveyor. It also provides a simple way of limiting the mass flux into the

hopper without resorting to elaborate control strategies regarding screw speed

and bucket rate.
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Chapter 3: Experimental Preparation

The exit flow of a hopper is known to depend heavily on the exit geometry

(Nedderman et al., 1982); manipulating the geometry precisely allows fine control

of the mass flux. To this end, we use a sliding plate attached to a fine-pitch screw

which gives a linear travel of 0.0139mm per degree of rotation. This is attached

to a digital rotary encoder which gives the angular position to the nearest degree.

The plate has a fixed width of 225mm, and a variable length, l, which varies

from 0–225mm. The maximum mass flux that can be supplied by the screw and

buckets is achieved at an aperture length of approximately 80mm.

Initially it was noticed that the mass flux could vary considerably for a given

aperture size between experiments. A brief look at the flow within the hopper

suggested that the hysteresis of dry granular materials was causing different flow

states to form within the hopper each with different sized static zones which

affected the repeatability of the flow.

To remedy this, on one side of the hopper a compressed air line was fitted

approximately 30 cm above the aperture. This fluidised that boundary and re-

moved the large static region from the hopper, helping to reduce the effect of the

hysteresis.

In addition to this, a fixed startup routine was developed which produced re-

peatable flows:

1. Open the aperture to 80mm;

2. Set the screw feed to maximum flux;

3. Wait for the hopper to fill above the level of the overflow;

4. Change to the desired aperture size;

5. Alter screw speed to reduce the overflow flux. (This reduces unnecessary

particle degradation).

These two additions were found to produce repeatable mass fluxes for a given

aperture size with an estimated error of less than 2%. The remaining variation

in the measurement for a given aperture size can be attributed to a combination

of measurement error (as discussed in the next section) and different random

loadings of the hopper.

62



3.2 Chute Design

Calibration

Independence of the flow state in the hopper and the chute allows the flow rate q

to be calibrated against the aperture size l thus saving the need to check the mass

flux of each experiment. We do this by choosing an aperture size, waiting for a

steady flow to develop and then swinging a large, rigid nylon bag underneath the

end of the chute. The nylon bag is connected to a crane via a crane scale which

gives the weight of the bag and its contents with an error of ±100 g at a sampling

rate of around 10Hz. The factory software supplied with the crane scale only

supplied data at around 1Hz, a level of accuracy that gave errors of ±20% for

the highest mass fluxes and so custom software was reverse engineered, details of

which are in appendix B.

We calculate the mass flux q as follows. The crane scale measures a force

F (t) = g

∫ t

0

q(t′) dt′ + qv +mbag g (3.1)

for a flow with mass flux q entering the bag of mass mbag at a mean velocity v.

These three terms are the weight of the sand in the bag, the impulse imparted to

the bag upon impact and the weight of the bag respectively. Assuming a constant

impulse qv gives the flux q as

q =
∂tF

g
. (3.2)

Figure 3.4(a) shows the mass in the bag as a function of time for various aperture

lengths. The trend shows a constant mass flux over intervals larger than the

sampling time of 0.1 s. The uncertainty in the flow rate measurement was less

than 1%.

A scaling law for the mass flux in terms of the aperture size of a cylindrical

hopper with a conical base was discussed by Beverloo et al. (1961). We proceed

by noting that, if we consider the case l ≫ d, then the mass flux q exiting the

hopper should scale as

q ∼ ρvWl (3.3)

for some characteristic velocity v at the exit of the hopper. Since the particles are

in free fall when exiting the hopper, this velocity can be expected to scale as the

result of being accelerated by gravity over a distance comparable to the aperture
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Figure 3.4: The mass flux, q as it varies with the aperture length l. (a) Variation
of mass flux over time for different aperture openings (b) Non-dimensional mass flux
q̂ = q/ρW

√
gl3 as a function of dimensionless aperture opening l/d. Inset of (b) shows

the dimensional flux q with units kg s−1 in terms of the aperture length, l, in m. The
error bars show the maximum error due to quantisation.

length l, i.e.

u ∼
√
gl, (3.4)

giving an expected scaling of

q ∼ ρW
√
gl3. (3.5)

The flow rates for our hopper with its slightly unusual geometry are non-

dimensionalised by this scaling to give q̂ = q/ρW
√
gl3. Figure 3.4(b) plots q̂

with the dimensional data, q, shown in the inset. We can see that this scaling

collapses the data very well, however the value of q̂ changes half way through the

interval we are interested in: above aperture lengths of 52mm the flow enters a

slightly different regime where q̂ alters slightly. The reasons for this are unclear.

The dependence of this mass flux on humidity and particle size has been checked

and is negligible. The scatter in figure 3.4(b) is due to different random loadings

of the hopper.
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Figure 3.5: Cross section of the chute showing the measurement systems and the rails
used to alter their x position.

3.2.4 Surface conditions

The experimentally observable portion of the chute consists of a modular steel

chassis and two layers of lining. The outer skin is an acrylic layer and is attached

permanently to the chute. The second, inner skin is made out of perspex, which is

slightly more scratch resistant and is designed to be easily replaced or substituted

for another material. The construction can be seen in figure 3.5.

During flow, the grains lightly scratch the surface of the perspex which changes

the surface condition initially. However, this process soon reaches equilibrium

with the result that the surface exerts a Coulomb-like frictional stress on the

sand with coefficient µw = 0.45. This permits a slip velocity, unlike a Newtonian

fluid near a boundary (see section 3.4.2 for more details).

The flow is bounded by two rigid side walls, a rigid base, and a free surface.

The side walls in all experiments are made of the smooth perspex. However, two

basal surfaces are used. One is the smooth perspex referred to above, and the

second is a rough base which is constructed by overlaying the smooth base with a
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Figure 3.6: Photograph of the instrumentation traverse. Visible are the LED strobes,
the laser triangulator and the camera.
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layer of coarse grit sandpaper (P40 grade). This has an average particle diameter

of 0.425mm, which is sufficiently large to impose a no-slip velocity condition at

the base for shallow angles. At high particle velocities however, the sand skips

over the bumps in the base, leading to a complicated boundary condition.

The asymmetry of the hopper caused a non-symmetric velocity profile in the

chute for low flow rates. To remedy this, a weir, around 30mm high, was placed

near the top of the chute just below the point where the sand falls from the

hopper. This causes the particles to slow down slightly, increasing the pressure,

causing them to spread evenly across the entire width of the chute. At higher

mass fluxes, the velocity profile is already symmetric and the weir has little effect

on the flow.

3.3 Measurement Systems

The chute is equipped with two measurement systems: a camera used to record

surface velocities, and a laser triangulator used to record the surface height. Using

these two fields, the Froude number Fr, the dimensionless height n, and the surface

acceleration and friction coefficient can be measured. Each system is controlled by

a separate computer (see figure 3.7). The first generates the high-precision timing

pulses needed to synchronise the camera and the flash and stores the recorded

video. These pulses are also used by the second computer which records the

height data, allowing a height profile to be matched to its corresponding video

frame. The height measurements are also used to remove parallax effects from

the velocity measurement.

3.3.1 Flow Height Triangulation

The height of the flow, z = h(x, y), is measured using a Micro Epsilon LLT2800-

100 laser triangulator. This is a line-optical system which projects a laser sheet

onto the surface of flow. The back-scattered light from the laser sheet is then

focused using a high quality optical system and registered by a CMOS array, as

shown in figure 3.8. The CMOS array is designed such that the illumination,

readout and processing stages can happen simultaneously, thus allowing a high
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Figure 3.7: Schematic of the measurement systems. One computer controls video cap-
ture and timing pulse generation. The second captures and processes height information
from the laser triangulator. It also counts the timing pulses which are used to match
the video frames to a height reading.

Line Projector

Laser Diode CMOS Sensor

Lens

Target Object

Line Projector

Laser Diode CMOS Sensor

Lens

Target Object

Figure 3.8: Schematic of the triangulation process used to measure the flow height. A
laser is shone onto the surface, and the distance calculated from the reflected light.
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data throughput. This system provides both the height (z) and the lateral (y)

coordinates. It outputs both values to the PC via a firewire interface and read

by custom software, which was developed in C++. The software writes the coor-

dinates to a custom file format, which is read by MATLAB for post-processing.

Details can be found in appendix C.

The laser triangulator is capable of calculating 256,000 coordinate pairs per

second with a maximum of 1024 points in a profile, or at a maximum rate of

1000 profiles per second. The maximum length of the measurable area is 140mm

laterally with a maximum surface deviation of 100mm in height. The accuracy

of the points is 0.04mm for a surface with ideal optical properties.

We have chosen to record 100 points per profile in our experiments which cor-

responds to a spatial resolution of around 1mm, or less than a particle diameter,

between points. We read data at 400 profiles per second, quick enough to resolve

our quickest flows to within 1mm of surface travel. We collect 10 s of data for

each position down the chute, either with the laser sheet perpendicular or parallel

to the direction of the flow. No significant difference in the mean flow height was

seen between the orientations. In practice, due to the slightly sub-optimal optical

properties of the sand and the inevitable build up of a thin layer of dust on the

lens, the error of the readings is slightly larger than the manufacturer’s specifica-

tion at approximately 0.2mm, but is still significantly less than the median grain

diameter. The central 120mm of the flow are measured, with the height typically

varying by less than two grain diameters across the slope.

Care must be taken to avoid measurements of saltating particles as they obscure

the dense bulk of the flow that we are interested in. Taking a median average

removes the effect of these outliers. Particles that are too close to the laser sensor

are out of the depth of field and are given a special value by the hardware so that

they may easily be removed from the data.

Calibrating the sensor to record the flow height is a simple procedure as the

equipment is calibrated at the factory with some reference surface, all that has to

be done is subtract the difference between the reference surface and the distance

to the base of the chute.

The height data presented in the experimental results have been time-averaged

over all of the recorded profiles at that x coordinate. For single point data, we
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also take an average across the profile (in the y direction).

In addition to providing the height data, the triangulator is also used to remove

parallax effects from the surface velocity measurements which will be explained

in more detail in the next section.

3.3.2 Surface Velocity

There are a number of techniques for calculating the velocity of a material, most of

which were initially developed for either solid surface displacements or transparent

fluid flows. These include Laser Doppler velocimetry and hot-wire anemometry.

However, these two techniques are unsuitable for a granular material as its opacity

and athermal nature prevent their use. Instead, we use a comparatively recent

technique called Particle Image Velocimetry (PIV) which is in widespread use in

the granular field (Eckart et al., 2003; Willert et al., 1996) . This technique has the

advantage of producing a two-dimensional picture of the surface velocity, and is

a truly passive technique for granular flows. This technique is based on analysing

differences between frames in a video sequence. We acquire the pictures of the free

surface using a JAI CL M4+ camera used in conjunction with a BitFlow R3 frame

grabber. A 25mm lens is used with a 0.95 f-stop. This captures the whole width

of the chute whilst giving a sufficient depth of field and illumination of the CCD.

The frame rate of the camera is fixed at 24 fps, at a resolution of 1372×1024

pixels. Since the size of each frame in real world coordinates is approximately

0.25×0.20m, a flow speed of 5m s−1 equates to the particles traversing the full

length of the picture between consecutive frames and therefore is too large to

identify any similarities between them. This problem can be solved either by

increasing the frame rate (thus requiring a new camera), or by exploiting the time-

steady nature of the flows and using a syncopated flash with a “frame straddling”

technique.

If the flow is steady in time then the description of the flow is insensitive to the

length of interval between pairs. However, it is not possible to gain a complete

description of the velocity profile with a single pair of images as the presence

of statistical noise, both from errors incurred by the pattern matching algorithm

and from the grains’ granular temperature, gives uncertainty in the mean velocity

value.
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Camera Aperture

Flash
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closed
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1.5ms

Figure 3.9: Temporal diagram of frame straddling: a technique developed for steady
flows allowing for an increase in temporal resolution using standard photography equip-
ment.

We solve the issue of having a short interval between images within the pair

by having a double flash that straddles the frame boundary. By activating the

flash at the end of exposure for the first frame, and the beginning of exposure

for the second frame, as shown in figure 3.9, we effectively have a frame rate of

around 700 fps for the pair. Over this short time the particles move a few pixels

between adjacent frames, which is ideal for the PIV algorithm detailed later in

this section.

However, generating this quick double flash requires some non-standard tech-

nology. Incandescent bulbs of the type used for traditional camera flashes do not

have a sufficiently fast response time for this purpose. They also require a huge

amount of power to be delivered over the short interval that they are on. Previous

attempts to solve this problem have used multiple sets of bulbs, however, since

they must necessarily be in different positions, they subtly change the pattern ob-

served by the camera, thus reducing the quality of the PIV measurement. Instead,

we use four banks of five high-powered LEDs. This avoids the need for multiple

sets of bulbs as they are relatively low power — a bench power supply switching

directly through a transistor is sufficient to power them all. Each bank is rated

at 14W (continuous rating), giving approximately 200 lm of luminescence.

The timing and length of the pulses used to fire the LEDs are controlled by a

combination of two signals. A hardware-produced square wave synchronizes with

the transfer of the lines in the camera’s buffer and is multiplied by a software-
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produced wave over which the user has control to specify the temporal location

and duration of the pulses.

The length of the LED pulse and the delay from the beginning of the frame

transfer is chosen in a trial and error process to achieve a good level of illu-

mination which is even between frames — CCD discharge times can affect the

result, causing bleed between frames. The final timings are then checked using

a photo transistor and oscilloscope, giving an accuracy of approximately 10−5 s.

The interval between the flashes is approximately 1.5ms.

The pictures are taken in a dark environment to minimise blur and some rep-

resentative images can be seen in figure 3.10.

Particle Image Velocimetry

The transparent flows for which this class of techniques were traditionally devel-

oped needed to be seeded with particles in order for the flow to be visualised.

These are typically small, neutrally buoyant particles with small Stokes’ number

to reduce their effect on the flow. For solids, the speckle produced by a laser

on an optically rough surface achieves the same effect. The first PIV techniques

for fluids used a laser to produce a Young’s fringe pattern, which allowed the

analogue autocorrelation to be taken and the velocity deduced. A full review

of analogue PIV techniques can be found in Grant (1997). For granular flows,

the material is sufficiently textured to render the introduction of tracer particles

unnecessary, making this technique truly passive. The particular PIV technique

used here takes the sequence of digital images as discussed in the previous section,

and analyses differences between adjacent frames in software.

The algorithm used to examine the difference between frames is as follows. We

define an image taken at time t as I1, and the next image in the sequence, I2,

is the image taken at t + δt. We treat these images as mathematical functions

representing the image intensity — in our case the grey-scale values of the image.

The algorithm in its most basic form takes a sub-image (the interrogation win-

dow) of I1 and finds the most similar sub-image in I2. More formally, if we restrict

our attention to windows of width w and height h, then we can define I i,jn as a

portion of In with its lower left corner at the (i, j) pixel. We take the measure

discussed in Gui & Merzkirch (2000) known as the Minimum Quadratic Difference
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(MQD) method,

D(m,n) =
1

hw

∫ w

0

dx

∫ h

0

dy
(
I i,j1 (x, y)− I i+m, j+n

2 (x, y)
)2
, (3.6)

which gives a numerical representation of the difference between the windows.

Here, (m,n) is the displacement between the two sub-images. We then search

over all (m,n) to find the window in the second image that minimises D and take

this as the most likely displacement for the particles in I i,j1 . This is converted to

a velocity by the formula

v =
1

δt
(m,n). (3.7)

For digital photographs the intensity maps are discretized and so the integrals

in equation (3.6) reduce to sums over the pixels. Since the photographs are

necessarily a 2-D representation, any motion perpendicular to the surface can be

calculated using the free surface kinematic boundary condition and the height

information from the triangulator.

The results of using this measure for two sample images are shown in figures

3.10 and 3.11. For clarity, figure 3.11 plots 1−D so that the peak can be clearly

seen. The result of the calculation for this example gives a very small displacement

in the y direction (as expected), and a large displacement of around 50 pixels in

the x direction1.

Our velocities are calculated using a modified version of the algorithm above.

It is taken from the synthetic Schlieren technique developed in Sveen & Dalziel

(2005) and gives a subpixel level of accuracy. This increased accuracy is obtained

by interpolating the peak of D with a 3-point Gaussian curve fit — the minimum

of the interpolated peak is taken to be the displacement. This typically reduces

the RMS error of the displacement to less than 0.1 pixels. For our data, this

equates to a typical error of approximately 0.01m s−1. The modified algorithm

also removes outliers in the velocity field by comparing a displacement vector with

its spatial and temporal neighbours. It then re-examines D in the neighbourhood

of the neighbours’ displacements to see if there is a suitable peak there.

The images are split into a grid of 69 by 51 interrogation windows. This offers

1The x displacement in these images has been accentuated by an order of 10 for illustrative
purposes. Typically x displacements are 5 pixels between frames.
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Figure 3.10: Representation of the displacement calculated by correlating a sub-image
of I1 with the sub-images in I2.

Figure 3.11: Plot of 1−D for different displacements (m,n) of the sub-image Ii,j1 seen
in figure 3.10.
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a high degree of accuracy whilst keeping the computational cost of the PIV to

a reasonable level. The window size corresponds to a rectangle of side length

roughly 4 times the particle diameter, giving a level of granularity that allows the

pattern matching algorithm to work effectively with the amount of deformation

caused by the strain gradient. A smaller area would incur large errors in the

calculated development, as individual particles appear very similar and would

give a number of strong peaks in the correlation.

For time-averaged data approximately 50 pairs of images are used. For data

points that represent the velocity of the flow at a given point down the slope,

the velocity field is then also averaged in both the x and y directions. Median

averaging is used in both cases.

Calibration

Since the PIV algorithm has no knowledge of real world coordinates, the displace-

ments it gives are in terms of pixels. To convert these to real-world velocities,

a mapping must be created between these pixel coordinates and the real-world

coordinates. This map may not necessarily be a linear transformation due to lens

distortion and parallax effects brought about by the change in flow height. There-

fore some care must be taken to ensure the transformation is accurate. To a first

approximation, the length of one of the sides of the field of view is proportional

to the distance of the camera to the surface. If, as in our case, the camera is

approximately 0.7m away from the surface, then a difference of 0.1m in the flow

height h would incur an error the order of 10% in the calculated velocity. It is

therefore important to remove this parallax effect from our calculations.

We proceed by using the chequerboard pattern pictured in figure 3.12 to gener-

ate a set of fixed, known real world points. The pattern has sharp contrast edges

meaning that the corners can be identified with a high degree of accuracy. The

squares have side-length of 25mm and are flush with the sides of the chute so

that the y coordinate origin corresponds to the wall. We use a corner detection

method from Harris & Stephens (1988) to calculate the location of the corner to

sub-pixel accuracy.

The idea behind this method is to take a small area of the image and compare

it to its neighbourhood. If there is an edge in this small area, then there will
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Figure 3.12: The chequerboard pattern used to locate fixed points with reference to the
chute geometry. This allows a pixel to real-world map to be constructed for different
flow heights.

be a minimal difference for displacements along the edge, and a sharp change

for displacements perpendicular to the edge. If there is a corner, then there will

be a large change in both directions. Consider taking a section of the image of

height h and width w and shifting it by x ≡ (x, y). Then, the weighted quadratic

difference with weight function π(x, y) is given by

S(x, y) =
w∑

u=0

h∑

v=0

π(u, v)(I(u+ x, v + y)− I(u, v))2. (3.8)

Choosing a Gaussian for the weighting, π(x, y), we effectively restrict the maxi-

mum displacement size to a few pixels. Therefore, we can linearise S in terms of

the partial derivatives Ix, Iy

I(u+ x, v + y) ≈ I(u, v) + Ix(u, v)x+ Iy(u, v)y, (3.9)
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which, when written in terms of the structure matrix A

A =

[
〈I2x〉 〈IxIy〉
〈IxIy〉

〈
I2y
〉
]
, (3.10)

gives

S = xAx⊤. (3.11)

The expression 〈.〉 represents a weighted sum of the quantity within. For a point

(x, y), if there is a corner there, then the eigenvalues of A are large and positive.

Sub-pixel accuracy is obtained by iterating the process over the neighbourhood

and interpolating the image there. This algorithm is most efficient when an

initial guess is supplied by some means. In our routine, the user clicks on the

four extreme corners of the grid. As the number of squares is known on each side,

we can interpolate between the user-supplied extreme corners to provide initial

points for the corner finder algorithm to use on all of the internal points. This

way, we generate a full grid of mappings between pixel coordinates and world

coordinates.

Once the map between the control points has been produced, we use the

MATLAB function cp2tform, which provides a locally-weighted mean interpola-

tion for coordinates not on the grid. This routine removes the effects of distortion

for small amounts of fish-eye curvature.

To remove parallax from our calculation we use the camera and laser triangu-

lator in tandem to photograph the calibration pattern at different distances from

the camera. We stick the chequerboard pattern onto a rigid surface and alter the

distance to the camera in ∼ 10mm intervals. The above routine is performed

at each level to create a full three-dimensional mapping between the coordinate

systems. For flow heights in-between those measured during the calibration pro-

cess, the displacement is taken as the linear interpolation of the two maps at

neighbouring heights.

If we define the map from pixel to world coordinates for a height hi as R(x, hi)

then for a pixel displacement d(x) at a position x and height hi < h < hi+1 the
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real-world velocity is given by

u(x) =
1

δt(hi+1 − hi)
[(h− hi) (R(x+ d(x), hi)− R(x, hi))

+(hi+1 − h) (R(x+ d(x), hi+1)− R(x, hi+1))] .

(3.12)

We perform this calculation for each of the 69×51 velocities to give a 2-D picture

of the surface velocity.

3.4 Material Characterisation

As described in chapter 2, the µ(I) rheology is an extension of the basic Coulomb

friction law with the coefficient varying with the inertial number I. Using the

functional dependence in equation (2.20) introduced by Jop et al. (2006) reduces

the characterisation of the coefficient to two constants µ1 and µ2 that are intrinsic

to the material and are the minimum and maximum values of the coefficient for

steady flows. There is also another constant I0 that is not only dependent on the

material but also on the flow geometry. We measure the friction coefficients µ1

and µ2 from measurements of hstop(θ), the height of the deposit left by a steady

flow at an inclination θ.

The lack of separation of scales in a granular fluid means that the particle

diameter d plays a crucial role in many granular rheologies including the µ(I)

rheology. We introduce a number of methods for evaluating the Particle Size

Distribution (PSD) of a sample of our material, and take the median of the

distribution as d. We also track the change in the PSD as the particles degrade

over time.

The same granular material is used in all of our experiments: quartz silica

sand that is a by-product of a coarse grade (14–18) sieving process. The initial

specification of the washed sand is for diameters to lie in the range 0.71–1.2mm.

Typically the sand is rough and angular; there is no noticeable change in shape

as the particles degrade and their size reduces.
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3.4.1 Material Sizing

A number of techniques can be used to calculate the PSD of a granular material.

Traditionally, sieving techniques are used. These have the advantage of being

able to process large sample sizes easily, but the resolution of the PSD is low

unless a large number of sieves are used and the sand vibrated vigorously. This

can lead to breakage of the sand, thus making the method unfavourable. In any

case, the original specification confines the particle diameter to lie within two

standard sieving sizes and further sieving would give little further information.

Instead, we discuss a number of more modern, optical techniques that offer a

much more detailed profile of the particle diameter d. These techniques fall into

two categories: binary image processing and segmentation techniques, and a fully

optical laser-based technique capable of detecting a very wide range of particles.

The image segmentation techniques require a digital photograph of a sam-

ple that is at most one layer thick. When measuring the PSD we must ensure

that enough particles are sized for the measurement to be statistically signifi-

cant. Kennedy & Mazzullo (1991) show that 300 – 500 particles are needed for a

statistically stable mean grain size value for natural sands.

A common problem with imaging a collection of grains is the apparent touch-

ing of the grain sections, preventing individual analysis. Although the number of

contact points between grains of random orientations is small, the apparent touch-

ing of the grains is caused by the ‘Holmes’ effect first noted by Holmes (1930),

whereby the projections of the particles in the thin layer overlap (Van den Berg

et al., 2002). It is therefore necessary to split the groups of particles into indi-

viduals, otherwise known as segmenting the image. Although this could be done

manually, it quickly becomes unfeasible for a moderate number of grains, and so

it is preferable for it to be done algorithmically.

Here we present two techniques that attempt to do this, the ‘Shortest Chord

method’ and the Watershed transform. The first algorithm developed to tackle

this turned out to be less efficient than later methods and so it was abandoned

in favour of those presented here. The details are presented in appendix D.

The first step in obtaining particle size information using the image segmenta-

tion techniques is to acquire the images themselves. We place a sample of sand

into a large petri dish on top of a diffuse light source. Having the light below
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the particles helps to increase contrast between the particles and the background.

A Nikon SLR camera is used to take 6 megapixel images (2000×3008) in an un-

compressed TIFF, (a lossless file format). The images contain around 500 – 700

particles, some of which are touching. We also take an image of the background il-

lumination which is subtracted from the first image allowing for easy and accurate

separation between the particles and the background.

Once the background illumination has been subtracted the image is thresholded,

producing a binary image. An ‘on’ pixel represents the background, and an ‘off’

pixel indicates the presence of a particle. There is a small amount of speckle

produced by dust and imperfections in the petri dish and dust. This is removed

from the binary image by morphologically opening it. The user manually sets

a threshold for this process, removing any objects smaller than the threshold.

Figure 3.13 shows the raw image and the result of the thresholding and opening.

Once we have a clean binary image, the segmentation can begin.

Shortest Chord Method

The shortest chord method is a conceptually simple yet computationally intensive

method of segmentation. The first step in the process is calculating the positions

of the centres of the grains. This is achieved by taking the Euclidean distance

transform of the image (Borgefors, 1986). This transform calculates an approxi-

mation of the minimum distance of a foreground pixel (i.e. a pixel in a particle)

to the background; the background pixels take a value of 0, and pixels within the

particles have higher values the closer they are to a particle centre. The maxima

of this transform give a close approximation to the particle centres (we use a

process called ultimate erosion to calculate these maxima). However, since the

particles used are not completely smooth, or indeed entirely convex, a number of

maxima occur near the centre of each particle. Multiple maxima within a single

particle are removed by creating a new binary image from the maxima pixels,

morphologically closing the image by less than a particle diameter and taking

the position of the centroid for each blob as the particle centre. This method of

finding the particle centres detects all of the particles, apart from ones that have

regions of high convexity (typically less than 20 in a sample size of more than

500) which report multiple centres.
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(a) Original Image

(b) Prepared Image

Figure 3.13: Two images showing the preparation routine. The background is sub-
tracted and the resultant image thresholded and morphologically opened to remove
speckle.
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Figure 3.14: Diagram showing a typical blob of particles, with the particle centres
produced by an erosion process signified by crosses. The red line is the perpendicular
bisector that minimises the distance between the two edges over all bisectors (bd) of the
line connecting the cores. Green lines are non-optimal cuts.

(a) Convolution Line (b) Isolated Clump of particles

Figure 3.15: The two images used in a convolution to find the shortest chord between
two particles.
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Now that the number of particles is known, the mean particle size can be

calculated by simply counting the number of foreground pixels in the original

binary image. However, for more detailed information about the PSD, we use the

particle centre information to separate the joined particles.

In order to do this, we label each region of the image. If a region is found

with more than one particle centre then it must be split. The split point is

chosen according to figure 3.14, by considering the bisectors of the line joining

the particle centres. Of these bisectors, the one with the least ‘on’ pixels in the

original image is chosen to be the line that splits the region into separate particles.

This can be done by taking the pixel-wise logical intersection between the original

binary image and a mask consisting of a line. More rigorously, if we define particle

centres as c1 and c2, and the unit vector joining them ŝ = (c1 − c2) / |c1 − c2|
then we define the bisector a distance d from c1 as

bd = {x : (x− c1) .ŝ = d} . (3.13)

Then we choose the bisector, bd that minimises

l(d) =

∫

x∈bd
I(x) ds, (3.14)

for 0 < d < |c2 − c1| where I is the map of the grey levels in the image and s is

the arc length along the path.

This method can also be formulated in terms of a convolution between the

image and a mask. If we define an image K such that K(x) = 1 for x ∈ b0 then

the number of pixels l in the intersection between I and bd is given by

l(d) =
∑

x

I(x)K(x+ dŝ), (3.15)

which is a region of the convolution of I and K. A sample image for I can be

seen in figure 3.15(b), and the image K containing the bisector b0 can be seen in

figure 3.15(a). The convolution is then calculated using an FFT for computational

efficiency.

The results of this algorithm are shown in figure 3.16 which shows the results

of the segmentation of the image. The expected over-segmentation caused by
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Figure 3.16: Results of the shortest chord method.

false-positive particle centres can be seen for very non-convex particles, although

this affects fewer than 2% of the particles.

Watershed Transform

The watershed transform is a basic morphological tool for segmenting images. It

relies on the fact that eroding the binary image will cause touching objects to

separate before they disappear. The algorithm separates the image into so-called

catchment basins, hence its name. The implementation of this algorithm (Russ,

2002; Meyer, 1994) again makes use of the euclidean distance transform E of the

binary image I. The minima of E give an approximation of the grain centres.

However, any non-convexity of the particles will mean multiple minima for each

particle and over-segmentation. To avoid this, we morphologically reconstruct E

to have minima only at the particle centres as we have previously calculated (in

section 3.4.1).

The regions of each catchment basin are calculated by ‘flooding’ the image,

taking the values of E as a height in a landscape. When the flooding is such

that two basins are about to flow into each other, the pixels over which this

happens are called a watershed line and are taken to be the edge of the particle.
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Figure 3.17: Diagram showing the SPOS technique. The sensor voltage decreases from
the baseline voltage vb to the shadow voltage vs as a particle passes through the beam.
The decrease in voltage is directly related to the projected particle size. Reproduced from
White (2003).

Heuristically, this can be thought of as a ridge running between two valleys —

water falling onto one side of the ridge flows into a separate river rather than a

drop falling on the other side. The results for this algorithm were very similar to

the shortest chord method on account of the algorithm detecting particle centres

being identical.

Single Particle Optical Sizing Technique

The final method used for particle sizing utilises a commercially available laser

light obscuration technique known as Single Particle Optical Sizing, or SPOS

(White, 2003). SPOS is a very flexible technique that allows a large range of

particle diameters to be sized. The equipment used here can size particles in the

range 0.005mm < d < 5mm.

As opposed to the previous two techniques which rely on image processing,

SPOS uses a laser shone on a dedicated optical sensor. The particles fall under

gravity through the laser beam. As they do this they produce a shadow on the
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detector, changing the output voltage. The change in voltage is directly related

to the projected cross section of the particle; the precise relationship between the

two is taken from a calibration curve which is produced by passing particles of

known size through the equipment. A schematic of the equipment can be seen in

figure 3.17.

In order to size a representative sample from the chute, around 100 g of sand

is riffled into 10 test tubes. One of these samples is placed into the machine

where it is vibrated such that the sand falls one grain at a time past the sensor.

The vibration rate is controlled by the system with a feedback loop to ensure

that occurrence of two particles passing simultaneously is kept to a minimum.

Otherwise, the two particles are detected as a single, large particle. The particles

and the air around them are sucked through the machine by a vacuum pump,

consistently aligning the particle’s longest axis with the flow.

The software provides histogram data of the particle diameters weighted either

by number or by volume. In our samples, there were a large number of very

small particles detected (d < 0.01mm) that were negligible when weighting the

PSD by volume. These fine, dust particles have been excluded from any further

analysis as their contribution to the dynamics of the flow inside the chute should

be negligible.

Due to the ease of use, robustness and repeatability of this procedure, all par-

ticle sizing data presented here uses this technique.

Discussion and Results

For any particle (apart from perfect spheres), its ‘diameter’ as a single value is

ill-defined. We can only hope to give a characteristic measurement of the size

which is repeatable and reliable, thus allowing the effect of particle size on our

data to be accounted for when comparison are drawn with other particle species in

third parties’ observations. However, the need for consistency between data sets

requires a knowledge of how the characteristic sizes given by various techniques

differ.

For any particle, we can define three lengths by placing the particle fully within

a cuboid of minimal volume. We define the lengths of this cuboid as d1, d2 and

d3 where d1 ≤ d2 ≤ d3 and lie in the directions e1, e2 and e3.
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The particle diameter on which sieving is based can be deduced by considering

the smallest cross section perpendicular to d1. This cross section perpendicular

to e1 will have a bounding rectangle of sides d2 and d3. Since the shape of the

aperture through which the particle must pass is, to a good approximation, a

square of side length dsieve, we have that all particles with d2 < dsieve will pass

through.

However, we also note that for particles where d2 6= d3, slightly larger particles

can pass through if oriented diagonally to the sieve. Taking the plane normal

to e1 and considering the bounding rectangle suggest that particles for which

d2 <
√
2dsieve − d3 will pass through, with the result that if d3 → 0 then particles

for which d2 <
√
2dsieve will also pass. This means that the particle diameter

recorded by the sieving process will give a result

d2 + d3√
2

. dsieve < d2 (3.16)

which, notably, is wholly independent of the largest dimension d1.

The two image-processing techniques record a slightly different particle diam-

eter to sieving. It is supposed that the particle lies with its longest axis parallel

to the horizontal so that the image seen by the camera is the projected area con-

taining the e1 axis. We can equate the projected area A to an equivalent circular

size by

d =

√
4A

π
. (3.17)

Assuming that the particles are approximately ellipsoidal, i.e. 4πd1d3 < A <

4πd1d2, we can bound the diameter recorded by these image processing techniques

dip as √
d1d3 < dip <

√
d1d2. (3.18)

The high speed laminar flow created by the vacuum in the SPOS machine

sucks the particles past the optical sensor, causing the particles’ longest axis to

align with the flow i.e. d1 is parallel to the vertical axis. This means that the

area projected onto the sensor is the same as would be observed using the image
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Figure 3.18: The cumulative distribution function of the particle size weighted by vol-
ume. The SPOS sizing method has been used here, and gives a median particle diameter
of 1.24mm. The first and third quartiles are 1.03mm and 1.48mm respectively.

processing techniques. As a result,

√
d1d3 < dSPOS <

√
d1d2, (3.19)

where we have used the same ellipsoidal approximation to convert the projected

area into an equivalent diameter. This reasoning indicates that the SPOS and

image processing techniques should give the same PSD. The discrepancy in the

characteristic size between sieving and the other techniques equates to a difference

of 20–30% for natural sands (White, 2003).

The PSD for the new sand before it has be recirculated around the machine is

shown in figure 3.18. The sand is initially graded by the suppliers using the sieving

technique, which gives a particle diameter range of 0.7mm to 1.2mm. Given the

sieved size, and using the aforementioned discrepancy of White (2003), we would

expect the size given by SPOS to be around 0.91mm and 1.5mm. These figures

agree very closely with the quartile measurements presented in the figure.
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Figure 3.19: The evolution of the particle diameter over time. Median diameter shown
with error bars signifying the upper and lower quartiles. Blue lines signify times at which
new sand was added.
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The development of the PSD as the sand is circulated over time is shown

in figure 3.19. It shows that the initial particle size decays quickly to around

1mm through particle-particle wear as well as wear caused by the recirculation

mechanism. The rapidity of the decay is due to the particles breaking along any

existing weaknesses in the particles. As these weak lines disappear, the particles

become more robust and the rate of decay reduces. The blue lines indicate times

where a substantial amount of new sand was added (∼ 5% of the total amount by

mass). The PSD remains reasonably steady, with the small variations an artefact

of the strong segregation effects seen in the chute. As segregation effects are very

sensitive to the strength of the shear in the flow, the sample is sensitive to the

flow history.

Subsequent chapters use the figure d = 1mm in all calculations. The density

of the quartz that grains consist of is ρ = 2660 kgm−3.

3.4.2 Frictional limits of equilibrium flows

The dynamics of a dense granular flow are heavily dependent on the frictional

contribution to the rheology. The µ(I) rheology combines the effects of other

mechanisms such as force chains and particle collisions into an effective friction

coefficient. In order to compare the experimental results with such a friction-

based rheology, it is necessary to measure the material’s natural resistance to

shearing. We can calculate the friction coefficient of a steady inclined flow, as in

such a flow the retardation by friction is equal to the gravitational body force,

giving

µg cos θ = g sin θ =⇒ θ = tan−1 µ. (3.20)

We can exploit this relationship to measure µ by setting up a flow and slowly

decreasing the inclination until the flow stops. We call this inclination θstop. An

important result due to Pouliquen & Forterre (2002) as discussed previously shows

that this angle is a function of only the particle species, basal condition and the

height of the flowing layer, i.e. θstop(h) for a given experiment. We can exploit

this result to define the inverse of this function hstop(θ), which is the height of the

stationary deposit left after a flow on an inclination θ.
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Figure 3.20: The deposit height hstop as a function of the inclination over the rough
base. Fitting the curve described by (3.21) gives µ1 = 0.54, µ2 = 0.68 and B = 3.0 .

We measure the hstop function by setting up flows on a range of angles in

increments of 0.1◦ on a wide chute. Once the flow has reached a steady state

we suddenly stop the mass entering the chute and allow the flow to come to a

complete stop. We then scan the deposit using the laser triangulator and look for

regions of constant height.

The hstop curve is well fitted by the form introduced in MiDi (2004):

hstop(θ)

d
= B

µ2 − tan(θ)

tan(θ)− µ1

. (3.21)

for some constant of proportionality B, and two constants µ1 and µ2. We have

discussed this form for hstop more fully in chapter 2.

The hstop curve over the rough base for our material is shown in figure 3.20.

Fitting equation (3.21) to the data gives µ1 = tan(28.7◦) = 0.54 and µ2 =

tan(34.3◦) = 0.68. The parameter B = 3.0, although this is not important for

our subsequent analysis but is included for completeness.

The characterisation with two friction coefficients is useful on a rough basal
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surface. On the smooth perspex there was no measurable range of angles with

µ1 = µ2 = tan(24.4± 0.2◦) = 0.45.
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Experimental Results

4.1 Introduction

In this chapter we present results of experiments performed on slopes with θ > θ2,

the methodology of which was introduced in chapter 3. Our measurement systems

used to collect the data are limited to surface measurements and therefore we

analyse the data by integrating the equations of motion over the chute cross

section. The result is similar in form to the shallow water equations in 1D, but

there are additional terms for the stresses at the wall. To this end, we briefly

review one of the most frequently used models in the field of granular flows and

its variations.

A Coulomb friction law is supposed for the stress tensor so that we may directly

compare our results to the µ(I) rheology discussed in chapter 2. We consider a

generalisation of the µ(I) rheology by allowing other functional forms for the

dependence of µ on Fr and n = h/d. Even with this generalisation, we find poor

agreement with the experiments and discuss the possible reasons for this.
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4.2 Theoretical Framework

We assume that the following equations of motion are valid for some stress tensor

σ and take a Cartesian coordinate system as in the previous chapters, with x

aligned with and increasing in the downslope direction, z perpendicular to the

base with z = 0 at the base and z = h at the free surface and lastly y lies across

the chute to complete a right-handed xyz triad. The origin is then at the top of

the chute on the basal surface.

We integrate over an area A that occupies the whole width of the chute in the

y direction, and all of the space above the basal surface in the z direction. This

is then specified by the limits 0 < y < W and 0 < z < ∞. The conservation of

mass is given by
∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

and the conservation of momentum by

∂ρu

∂t
+∇ · (ρuu) = ρg +∇ · σ, (4.2)

where uu denotes the dyadic product of u with itself.

The mass holdup in a slice is

ρphWφ =

∫
ρ dA, (4.3)

hence we denote the average of velocity quanties uni as

ûni =
1

hWφρp

∫

A

ρuni dA. (4.4)

Previous studies (e.g. Louge & Keast, 2001) have used non-invasive experimen-

tal measurement techniques to show that φ is approximately constant. This is in

agreement with DEM simulations (Silbert et al., 2001), with the approximation

improving for thicker flows. A fuller discussion of this assumption can be found

in chapter 2. We therefore assume incompressibility and take φ = const.

94



4.2 Theoretical Framework

As W is also constant, we can write the integrated conservation of mass as

∂h

∂t
+

∂

∂x
(hû) = 0, (4.5)

as there is no mass flux through the basal surface or the top surface (assuming

the thickness of the saltating layer remains near constant down the slope). The

limits of the integral in the definition of (̂·) do not depend on the coordinates, so

the averaging process commutes with derivatives. Defining the average of a stress

quantity σij as

σ̂ij =
1

hWφρp

∫

A

σij dA, (4.6)

the conservation of momentum in the slice is given by

∂hû

∂t
+
∂hû2

∂x
= hg sin θ +

∂hσ̂xx
∂x

− 2
h

W
ψx − τx, (4.7)

∂hv̂

∂t
+
∂hûv

∂x
=

∂hσ̂yx
∂x

− 2
h

W
ψy − τy, (4.8)

∂hŵ

∂t
+
∂hûw

∂x
= − hg cos θ +

∂hσ̂zx
∂x

− 2
h

W
ψz − τz. (4.9)

We have used v = 0 at the walls, and introduced the basal shear stress

τi =
1

φρp

[
1

W

∫ W

0

σiz|z=0 dy

]
(4.10)

and the stress at the walls

ψi =
1

φρp

[
1

h

∫ h

0

σiy|y=0 dz

]
, (4.11)

both expressed in terms of the average stress at the appropriate boundary. We

have exploited the symmetry of the flow to write the total stress on the slice of

fluid due to the shearing at the walls as twice the contribution from one wall.

If we take the wall stress ψ and the transverse velocity v to be zero, and use

the appropriate form for the stress tensor σ, we recover the shallow water or

Saint-Venant equations (de Saint-Venant, 1871).
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4.2.1 Savage-Hutter Model

One of the first motivations for deriving an integrated approach to modelling

granular flows was to predict avalanche run-out. An early attempt at modelling

avalanches using a continuum mechanical theory was made by Savage & Hutter

(1989). Their model has since become popular and is widely used on account of

its simplicity, while still retaining a physical foundation. In its various guises it

has been used to predict the shape, run-out and velocity of avalanches in many

studies e.g. Denlinger & Iverson (2004); Gray et al. (1999); Greve & Hutter

(1993); Hutter et al. (1993), to name but a few.

The original theory was very simple yet gave good agreement with laboratory

experiments. It relied on a simple force balance between the gravitational forcing,

basal resistance and the pressure gradient along the slope. It also exploited the

property of avalanches that the majority of shear happens in a narrow layer at

the base, and used this to simplify the velocity profile to a plug flow with slip

at the base. If the material obeys a Coulomb law then the plug flow hypothesis

holds if the internal angle of friction is larger than the angle of the frictional basal

stress. The model can also easily incorporate other forms of basal drag.

The vertical inertia in the Savage-Hutter model is also neglected as it is assumed

that the avalanche is much longer than it is high. This is also known as the long-

wave approximation, and gives a simple hydrostatic balance for the pressure.

We can estimate the size of the neglected inertia by scaling x with a typical

length scale L and z with the height h. Since the flow is assumed to be a plug

flow, mass conservation implies that

w = −∂u
∂x
z. (4.12)

Therefore, if the vertical momentum in equation (4.9) scales as h2uu′/L, then it

is small in comparison to the basal pressure hg cos θ if

ǫ =
h

L
≪ Fr−1. (4.13)

The vertical inertia which is O(ǫp) can thus be safely neglected, and the unidi-

rectional assumption is valid.
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The hydrostatic pressure balance is then used for the Coulomb basal traction,

and is given by

τ = −p tanϕ sign(u), (4.14)

where δ is defined as the basal friction angle.

The original Savage-Hutter model does however introduce a significant compli-

cation over the standard Saint-Venant equations by introducing the highly non-

linear earth pressure coefficient. This addition is motivated by the classic soil

mechanics problem of calculating the loads exerted on a retaining wall (Rankine,

1857), and is caused by the difference in the strength of soil under extensive and

compressive modes of deformation. This gives the lateral pressure pL as a function

K multiplied by the lithostatic pressure:

pL = K

(
∂u

∂x

)
p, (4.15)

with K taken as a piecewise constant function

K =





Kact if
∂u

∂x
> 0.

Kpass if
∂u

∂x
< 0.

(4.16)

where the active mode corresponds to the compressive deformation and the pas-

sive mode to extensive deformation. More recently however, experimental evi-

dence (Gray et al., 1999; Ertaş et al., 2001) suggests that this sharp stress transi-

tion does not exist. Indeed, the depth averaged equations give good agreement on

slopes and in rotating drum flows without adding this complication. We therefore

choose to take K = 1 and return to an isotropic pressure. This basic approach

to avalanche modelling has been extended in many ways by adding various com-

plicating effects. Indeed, the account given above is a simplification of the model

presented in the initial paper, which includes lateral effects and a slowly changing

curvature of the basal surface. Other effects such as more strongly curved basal

topography (Savage & Hutter, 1991), erosion and deposition effects (Gray, 2001)

and many others have been included over the years. Indeed, the integrated ap-
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proach which we will use to analyse our experimental results can be thought of

as an extension to the Savage-Hutter theory.

4.2.2 Application to chute flow

In order to discuss our experimental results effectively, we must add a few analytic

devices to the µ(I) theory already explained in chapter 2.

The depth-integrated equations of motion in section 4.2 provide a means of

defining a macroscopic friction coefficient, or total friction, µt, which measures

the overall retardation of a slice of granular fluid due to the resistive forces exerted

on the material by the boundaries. This stress is then transmitted through the

material according to its rheology. As our flows are time-steady we can set ∂t = 0.

We write the x-velocity u as the maximum surface velocity us multiplied by a

dimensionless function, to give the y and z dependence:

u = us f
( y
W
,
z

h

)
. (4.17)

In this representation, f takes a value of 1 at a point on the surface. Since the

flows are assumed to be symmetric and the walls exert resistive forces, we expect

this to occur in the middle and therefore f(1/2, 1) = 1 with f < 1 at the walls. A

flow with a no-slip basal condition equates to f(y/W, 0) = 0, a flow with Bagnold

depth dependence has f ∼ z3/2, and a plug flow has f(y/W, z/h) = 1.

We define sn as the average value of fn, i.e.

sn =
1

Wh

∫ ∫
fn dy dz, (4.18)

meaning we can write

û = uss1. (4.19)

Assuming f(y, z) is positive everywhere (i.e. no return flow), we have 0 < sn < 1.

The values of the sn for typical flows are s1 = s2 = 1 for a plug flow, s1 =
1
2
, s2 =

1
3

for linear shear, and s1 =
3
5
, s2 =

9
20

for a Bagnold profile. In this formulation we

define the mass flux

q =

∫

V

ρu dV = φρpûWh, (4.20)
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where we have used the relation

ρ = φρp, (4.21)

and which, when used in the conservation of mass in equation (4.5), gives

q = const. (4.22)

down the slope, as is to be expected. At this point we make an assumption about

the form of the stress tensor. For a hydrodynamic formulation such as the one

discussed here, we must include a pressure which is taken as isotropic for the

reasons described above (i.e. the earth pressure coefficient K = 1 at all times).

We also include a deviatoric component of the stress tensor τ , such that

σij = −pδij + τij . (4.23)

Using a similar analysis to chapter 2 and section 4.2.1, we also exploit the

aspect ratio of the flow to neglect vertical inertia. Using the scalings

x ∼ L,

z ∼ h,

u ∼
√
gL,

we define the aspect ratio

ǫ =
h

L
(4.24)

we find that the inertial term has size

∂hφûw

∂x
∼ ǫ2φgL≪ ǫφgL ∼ φhg cos θ, (4.25)

where we have used incompressibility to scale w ∼ ǫu, and therefore the term can

be neglected if ǫ≪ 1.

If we assume that the deviatoric stress τij ∝ γ̇ij (as in the µ(I) rheology) then

since |∂zu| and |∂yu| are much larger than all the other gradients of the velocity in
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the interior of the flow, we can include just the terms τxz and τxy in our analysis.

We assume that the chute is wide enough so that the friction at the wall makes

negligible difference to the vertical momentum balance of the slice. We also take

the momentum flux into the dense part of the flow, caused by any saltating par-

ticles at the surface z = h(x), to be small. Making these assumptions, we recover

a hydrostatic pressure balance by partially depth-integrating the equations. This

gives

p(x, z) = ρpφg cos θ(h(x)− z). (4.26)

We assume that the mass contained within this dense core is much larger than

in the saltating layer, and so the saltating layer has a negligible influence on the

dynamics. Because of this, we may take p(x, h(x)) = 0 and the surface at z = h

to be stress-free. Integrating this we obtain

p̂ =
1

2
ρpφhg cos θ. (4.27)

Up until this point, the flow height has only appeared as part of the combination

hφ, the integrated mass, but in the expression above, h appears independently

through the dependence on the centre of mass of the flow. We therefore need to

introduce an equation of state for φ. As we have assumed incompressibility we

use φ = const. In most of our experiments the measured height was well defined

as the flows had a sharp interface. However, for the very fast flows, a small

saltating region appeared at the surface. Taking a median value of the height

profile removes most of the saltating grains from the data, and our effective h

records the height of the surface of the dense region in the middle of the flow.

Using these simplifications in the x momentum evolution (equation (4.7)) we

obtain
s2
s21

∂ (hû2)

∂x
+

∂

∂x

(
1

2
g cos θh2

)
= gh sin θ − hF. (4.28)

Here, we define the retarding force on the slice of material per unit area× density

as F . In terms of the basal and wall tractions we have

F = 2
h

W
ψx + τx. (4.29)
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Rewriting this in terms of the surface velocity us , we obtain the evolution equation

(
s2 −

s21
Fr2

)
us

dus
dx

= g sin θ − F. (4.30)

By drawing an analogy between the resistive force F and a Coulomb friction law

(as in chapter 2), we can define a total friction coefficient µt as

µt =
F

g cos θ
. (4.31)

In steady, fully-developed flows the acceleration is by definition 0, and µt = tan θ.

The factor s2 − s21Fr
−2 multiplying the advective acceleration in equation (4.30)

gives some indication of the range of validity of the assumption of time-steady

flow. For Fr > s1s
−1/2
2 , the downslope coordinate x behaves as a modified time

coordinate and the flows are super-critical, with the upstream conditions left

unaffected by downstream conditions. When Fr < s1s
−1/2
2 , the flow is sub-critical

and it is determined by the downstream conditions. In both cases, the existence

of a time-steady state, and hence the validity of equation (4.30), will depend on

the boundary conditions. However, we note that for small changes of the height as

in our experiments, the term proportional to Fr−2 is small and can be neglected.

One more definition needed to explain our results is the average, or bulk inertial

number Ib. We can use typical values for the local shear rate |γ̇| = us/h and the

basal pressure P = ρgh cos θ to define the bulk inertial parameter as

Ib =
usd√
gh3 cos θ

=
Fr

s1n
. (4.32)

In our experiments Ib, is in the range 0.1 < Ib < 2.7, throughout which the flow

remains in the dense regime. The upper limit of this range is much larger than in

previous studies, which have typically focused on the range Ib < 0.5 (MiDi, 2004;

Forterre & Pouliquen, 2008).

Data Preparation

In order to study the acceleration of the flow it is necessary to calculate the

derivative of the velocity data. Doing this directly amplifies noise, so the data
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is first fitted with the form in equation (4.33). Median averaging of the surface

velocity was chosen in order to neglect the effect of outliers. The functional form

used for the fit is

u2s = u20 +
δ

γ

(
1− e−γx

)
, (4.33)

for some constants u0, δ and γ. This form can represent convergence to a constant

velocity state for large γx as u2s = u20+
δ
γ
. For positive γ, this velocity is what would

be attained in an infinitely long chute, barring any phase transition. Constant

acceleration (or deceleration) is also captured for small γx since u2s = u20 + δx +

O ((γx)2)). This fitted all of the data for appropriate choices of u0, δ and γ. Many

other choices would doubtless also have worked without affecting the results.

Using this fit, the total friction µt is given by

µt = tan θ − δ

2g cos θ
e−γx

(
s2 −

s21
Fr2

)
, (4.34)

where s1 and s2 are assumed to take values given by a Bagnold profile for the

rough base and a plug flow for the smooth base. The height data was also fitted

using a similar functional form that replaces u2 with h. The results of the fit for

h and us can be seen as solid lines in figures 4.5(a) – 4.5(d).

4.3 Results

Data were collected for inclinations 30◦ ≤ θ ≤ 55◦ with intervals of around 2◦

and for fluxes 2 kg s−1 ≤ q ≤ 20 kg s−1 with intervals of around 2 kg s−1. The total

number of experiments for each base is approximately 120 and each experiment

consists of measurements taken at 10 positions down the chute. A total of just

under 2400 sets of measurements were taken in total.

We observed a number of different flow regimes besides the fully dense regime

that we were expecting. The phase diagrams in figure 4.1 show the character of

the flows as the inclination θ and the mass flux q change. The mass flux has been

non-dimensionalised using the scaling ρpwd
√
gd.

Figure 4.1(a) shows that over the smooth base two regimes were observed. At a

fixed inclination and for a sufficiently high mass flux the flows were dense and ac-

celerating, however for slightly lower mass fluxes an instability occurred whereby
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Figure 4.1: Phase diagram for flows over rough and smooth bases. Each base has
around 130 experiments performed, with each experiment consisting of 12 sets of mea-
surements. (▽) Constant velocity flows, (�) Accelerating, Dense Flows, (+) Flows with
separation at walls, (×) Low density flows, (◦) Superstable heap formation (see text for
details.)
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Figure 4.2: Lateral inelastic collapse. Adjacent panels are separated by 0.25m. In-
creasing x from left to right.

the flow detached from the walls in a type of transverse inelastic collapse (pictured

in figure 4.2). This will be discussed further in section 4.4.1. The majority of flows

on the rough base also fell into one of these two regimes. The rough surface also

produced a number of regimes not seen on the smooth base (figure 4.1(b)). For

flows over the lowest inclinations, the velocity was constant down the slope. At

these low inclinations sufficiently high mass fluxes produced a superstable heap

at the base (Taberlet et al., 2003) and the chute quickly overflowed. Superstable

heaps are stationary or creeping regions that form at the base of the chute for

inclinations θ > θ2 and are stabilised by the flow on top of them. When the mass

source is cut off these regions start to flow and eventually the chute empties.

No constant velocity flows were observed for the smooth base, as the friction

angle on the smooth base was lower than the lowest inclination investigated.

For the highest inclinations and for low mass fluxes, a low-density regime was

observed whereby the entire flow became agitated. These flows did not have a

well-defined surface and so PIV and height data were not available. The flows

discussed here, unless otherwise specified, lie in the dense, accelerating regime.

We did not notice any bistable regions of the parameter space though we did not

look for these in detail.

4.3.1 Dense Flow

The flows over smooth bases showed higher average surface velocities than over

rough bases, which is to be expected since a smooth surface gives less resistance.

The typical surface velocity profile development for each base can be seen in

figure 4.3. Each line represents a time-averaged velocity profile at a given point on

the slope. For both flows depicted, it can be seen that the material is accelerating
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Figure 4.3: Evolution of the time-averaged transverse velocity profile as the material
accelerates down the slope. The flow parameters are θ = 40◦ and q = 19.1 kg s−1. Inset
shows u/umax against y/w.
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Figure 4.4: Evolution of the time-averaged transverse height profile as the material
accelerates down the slope. The flow parameters are θ = 40◦ and q = 19.1 kg s−1. No
height data was available at the edges.
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as it progresses down the slope.

A striking result was the effect of the basal surface on the shape of the velocity

profile at the free surface. Figure 4.3 shows flows with the same control parameters

(q, θ) exhibiting qualitatively different surface profiles. Flows over the smooth

bases invariably had a profile with a gradual and continuous change in velocity

gradient across the chute, whereas the flows over the rough base developed a

region in the centre of the chute with no lateral variation. This region is flanked

by two shear zones, one near each wall, with the velocity varying linearly with

distance from the boundary. This type of behaviour is usually found in confined

flows; in a vertical chute, the stress in the centre of the flow is less than the yield

stress and so a plug region forms with a shear band at the wall of fixed width,

typically of size 5 − 10d. Flows over both basal surfaces exhibit a non-constant

acceleration.

The insets of figure 4.3 show each velocity profile normalised by its peak velocity.

In the smooth case, the effect of the shape of the initial condition is transient over

a distance of around 1.5m after release. After this point, the shape of the profile

remains steady in time, implying the y dependence of f is constant. In the rough

case however, the slip velocity at the wall tends to a limit, while the central,

plug-flow region carries on accelerating. This implies a non-self-similar shape and

therefore the sn change as the flow develops.

Figure 4.4 shows the height evolution for the same flows as figure 4.3. The

variation of the height across the slope is minimal, typically less than 2d. Height

data for the edges of the flow were not systematically available due to the limited

width of the laser sheet, however, the edges were checked periodically and showed

no significant deviation in height from the centre. As the flow accelerates down the

slope, conservation of mass causes the height to decrease. The surface velocities

over a rough base are typically lower and, by this principle, the flow is deeper for

the same q over the smooth base.

Flows for which θ < θ2 showed no acceleration along the chute, maintaining

constant velocity and height throughout. No non-accelerating flows were observed

for flows over the smooth base, as the θ1,2 were outside of the investigated range.

For the accelerating flows, although the cross-slope velocity profiles are quali-

tatively different between the bases, there is no qualitative difference in the de-
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velopment of us down the slope. Comparing figure 4.5(b) to figure 4.5(a) and

figure 4.5(d) to 4.5(c), we see the same general behaviour from both surfaces:

gradually changing acceleration accompanied by the reduction in flow height en-

forced by mass conservation. For both surfaces we see a general trend of increasing

velocity for both increasing q and θ. Figure 4.6 plots the volume fraction multi-

plied by the shape parameter s1, calculated using the expression q = ρφs1whus.

This, in all cases, is in the range 0.3− 0.7. A Bagnold profile has s1 = 3/5, so for

a typical volume fraction of φ = 0.6 we should expect to see a value φs1 = 0.36.

This is indeed the case for the rough base, indicating that the Bagnold profile as-

sumption is reasonable in the calculation of the friction coefficient. Higher values

of s1φ indicate the presence of some slip developing at the basal surface.

For plug flows, we expect φs1 = 0.6 which is closer to the value seen on the

smooth base. However, values seen in figures 4.6(c) and 4.6(a) show that the

observed values are slightly lower than predicted, indicating that some curvature

is present in the z direction and the basal slip velocity is therefore less than the

mean surface velocity. This is to be expected since the plug-like profile is a zeroth

order approximation of the flow. Variation in φs1 down the slope is small.

The different bases produced different behaviours with respect to the bulk fric-

tion coefficient. For the rough base, a Bagnold depth dependence has been as-

sumed in the calculation of µt in equation (4.30). The precise choice of depth

dependence does affect the calculated value slightly. Since the difference in s2

at extremes of Bagnoldian and plug flow is a factor of approximately 2, we may

safely say that the deviation of µt from the equilibrium value of tan θ can at most

be affected by this much. However, the qualitative behaviour remains unchanged

by the assumed depth dependence. Figure 4.7(a) shows that on a rough base, µt

varies from around 0.55 to 1.1. The inset of figure 4.7(a) shows that the ratio

µt/ tan θ is less than the steady-state value of 1 for all flows, and no lower than

around 0.8. The very lowest values of µt are attained for low inclinations, where

the flows are steady. The friction balances gravity in these flows despite the in-

clination being above the angle of maximal resistance θ2, as the sidewalls give an

extra frictional contribution. At higher inclinations, we see a dependence on q

appearing: the lower the value of the flux q, the lower the bulk Fr, and the smaller

the range of µt down the slope. For a given Froude number and inclination, the
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(a) Varying q at θ = 32.2◦ on the smooth surface.
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(b) Varying q at θ = 38◦ on the rough surface.

Figure 4.5: Effect on the development of the average height of the flow h and the
maximum surface velocity us as the flux q is varied for a specific inclination θ on the
rough and smooth bases.
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(c) Varying inclination for q = 11 kg s−1 on the smooth surface.
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(d) Varying inclination for q = 11 kg s−1 on the rough surface.

Figure 4.5: Effect of varying the inclination θ at a specific q on the rough and smooth
bases.
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Figure 4.6: Variation of s1φ on both surface types as q, θ and x are varied for specific
values of q and θ.
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Figure 4.7: The total friction µt as a function of Fr. Coloured by inclination. A
Bagnold depth dependence is assumed for flows over the rough surface, and a plug
flow for the smooth surface. Inset shows µt divided by the value attained for a non-
accelerating flow, tan θ.
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Figure 4.8: Non-dimensional velocity u√
gd

at the end of the chute as the inclination θ

and the flux q vary. Flows that are dense across the entire width are denoted by (◦),
and flows that have undergone transverse inelastic collapse are denoted by (×).
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highest values of µt are seen for the flows with smaller flow heights. A qualitative

explanation can be given in terms of the dilatancy. The grains close to the rigid

rough surface experience a higher resistance to flowing due to the increased or-

dering and entanglement of the material near a rigid surface (Pouliquen, 1999b;

Pouliquen & Renaut, 1996).

Figure 4.7(b) shows that on a smooth base, there is only a weak variation of

0.5 < µt < 0.6 for all Fr. This is slightly larger than the maximal friction angle

obtained from the hstop measurement of µt = 0.45. This disparity is possibly due

to the addition of wall friction. The flux dependence over the smooth base is more

complicated than for the rough base, and is briefly discussed in section 4.5.

Figure 4.8 shows the velocity of the material at the end of the chute as a function

of the inclination θ. The exit velocity for a given inclination is monotonically

increasing with the flux, and is reflected in the decreasing value of µt as the flux

increases. For terminal velocities in very long chutes one can set µt as a constant

and assume Fr is large at equilibrium. We can then integrate equation (4.28) to

obtain

1

2
u2s =

1

s2
(sin θ − µt cos θ) xg +

1

2
u20, (4.35)

4.4 Secondary effects

4.4.1 Inelastic collapse

When the flows are sufficiently energetic, a phenomenon similar to inelastic col-

lapse occurs whereby a dense region in the centre of the chute is flanked by two

high energy, low φ regions. For a given inclination, the value of q at which this

occurs is lower on a smooth base than on a rough base. This is possibly due

to the rough base dampening the high energy particles at the boundary. Since

the interaction with the boundary in this regime is different to that of the fully

dense flows, a direct comparison in terms of µt becomes meaningless, and so these

experiments have been excluded from figure 4.7(b). The data denoted by crosses

in figure 4.8 show the values of θ and q for which the flow visibly separates from

the walls before the material exits the chute. At a fixed inclination, the separa-
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tion disappeared for sufficiently high mass fluxes. We discuss this phenomenon

in more detail in chapter 5.

4.4.2 Surface waves

Shallow flow systems are subject to instabilities known as roll waves or Kapitza

waves (Forterre, 2006), owing to the tendency of deeper regions to move faster.

This is typified by the flow rule in equation (2.32). For the flows investigated

here, these waves occurred at angles near θ2 for moderate flow rates. The space–

time plot in figure 4.9 shows the amplitude of the waves on a slope of 32.2◦

at a mass flux of 5.9 kg s−1. The time-averaged height has been subtracted at

each position, and the general trend of decreasing height as the flow develops

down the slope is apparent. The colour difference has been normalised such

that white corresponds to a 5mm deviation above the mean height and black

represents a 5mm depression. Waves appear soon after exiting the hopper with

an amplitude of around 2–3mm and a wavelength of 404mm. Half way down the

slope, at 2.05m after release, the amplitude has increased by a factor of two and

the wavelength has increased slightly to 564mm. The last reading, which shows

little surface variation, would suggest that the flow has crossed some threshold and

the disturbance has reached equilibrium amplitude. The linear theory presented

in Forterre & Pouliquen (2003) gives a stability threshold of Fr ' 0.7, above which

the flow is susceptible to these surface waves. The phase speed of the waves is in

agreement with the velocity calculated using PIV to within 5%.

4.4.3 Convection currents

Figure 4.10 shows typical behaviour for the horizontal velocities at the surface of a

flow over a rough base. There is a down-welling at the walls which is accompanied

by an up-welling around 2 cm toward the centre, reminiscent of wall-cooling. Such

patterns have been observed before but they are contrary to the inferred flow field

in studies such as Savage (1979). We see that in figure 4.10 the horizontal velocity

is of the order of 1% of the downstream velocity. The maximum seen across all

of our data was less than 5%.
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Figure 4.9: Variation in height at θ = 32.2◦ q = 5.9 kg s−1. The colour represents a
deviation about the mean in mm. The black lines indicate the calculated velocity from
PIV measurements, showing that the waves’ group and phase velocities are equal.
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Figure 4.10: Surface horizontal velocity normalised by the mean downstream velocity
for a flow on a rough base with θ = 44◦ and q = 13kg s−1.

4.4.4 Longitudinal vortices

Figure 4.11 shows the flow over a rough base with θ = 40◦ and q = 5.5 kg s−1.

Approximately 3m after the sand is released, peaks in the downstream velocity

develop, similar to those seen by Börzsönyi et al. (2009) and Forterre & Pouliquen

(2001). A linear stability analysis using the kinetic theory of Lun et al. (1984) was

performed by Forterre & Pouliquen (2001) and was used to predict the formation

of the longitudinal vortices. The quantitative agreement with experimental data

was limited, but this was expected as the kinetic theory in its original form is ill-

suited to high volume fractions. However, using an analogy with Rayleigh-Bénard

convection, it was clear that since the equations possess terms very similar to those

for a Newtonian compressible thermofluid, the overturning mechanism could be

captured. Since at a rough boundary fluctuations of the grains are produced by

the working of the shear on the stress, a rough base modelled with a Fourier heat

conduction law acts as a heat source with a cold, dense region above.
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Figure 4.11: The formation of longitudinal vortices on a rough base with θ = 40◦ and
q = 5.5 kg s−1. The height decreases monotonically from 17mm at the top of the chute
to 11mm just before the exit.
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Figure 4.12: Experimental and numerical friction and velocity over a rough base at
θ = 38◦ and q =17.8 kg s−1 using parameters µ1 = 0.54, µ2 = 0.68 = tan(34◦) and
I0 = 0.3. Panel (a) shows the surface velocity profiles as it changes down the slope (i.e.
as x increases) of both the experiments (solid lines) and the results of the finite volume
code presented in chapter 2. It can be seen that the µ(I) rheology predicts an incorrect
shape of profile. Panel (b) shows that the observed experimental friction is far higher
than that predicted using the µ(I) rheology.
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4.5 Discussion

The µ(I) rheology has been developed and validated primarily for equilibrium

flows with low I. However, the transverse surface velocity profiles that are pro-

duced by the simulations exhibit a qualitative difference to non-equilibrium flows

observed experimentally. The numerical calculations show that there is invariably

a smooth change of gradient over the entire width of the chute in the µ(I) rheol-

ogy, as opposed to the experimental profiles on the rough base which have three

linear regions. A comparison between the numerical and experimental flows on an

inclination slightly higher than θ2 is shown in figure 4.12. We see that the total

friction µt for the experimental data is much higher than than the total friction

predicted using the µ(I) rheology.

For inclinations below the maximum friction angle, good quantitative agree-

ment of the average velocity us and total friction µt can be achieved by changing

the rheological parameters from their experimental values. It is also possible to

closely match the slip velocity at the wall by changing the wall friction coefficient.

Any change of µw only has a small effect on the average velocity since its effect

is weighted by the aspect ratio h/W (see equation (2.58)), and can therefore be

independently chosen to match the wall velocity.

This comparison with experiments of accelerating flows and high I shows a

poor agreement with our data. One crucial difference is the existence of the lim-

iting value of friction in equation (2.58) as the flow develops and thins. For this

rheology, which takes its parameters from hstop experiments, the limiting value is

independent of the inclination of the flow. A comparison between the numerical

results in figure 2.13 and the data presented in figure 4.7 strongly suggests that

experimentally this is not true. For inclinations where θ > tan−1 µ2, the µ(I) rhe-

ology predicts a total friction value of µ2. However, we observe steadily increasing

values much larger than those measured in the hstop experiments.

Unless explicitly mentioned, all experimental data presented here appear dense

at the free surface. Without this property, accurate measurements could not

be made with our equipment. We can indirectly examine the averaged volume

fraction by using the equation for global conservation of mass q = s1ushwφρ.

However, care must be taken with the unknown shape parameter s1 in order to

gain information about the volume fraction. The parameter s1 is the product of
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Figure 4.13: Plot of szφ/0.58, coloured by inclination. The dots indicate the mea-
surement at the top of the chute. The rough case is plotted against Ib, and the smooth
against Fr. The lines in (b) indicate the region where a Bagnold profile is likely.

two contributions: one from the z depth dependence and from the y transverse

dependence i.e. s1 = sysz. We define sy as

sy =

∫
u

us

∣∣∣∣
z=0

dy, (4.36)

i.e. a function of the velocity profile at the surface. We can then use this to

calculate the product szφ.

Figure 4.13 shows szφ normalised by a packing fraction of 0.58, a typical volume

fraction as measured by Louge & Keast (2001). A value of 1 indicates a plug-like

depth dependence, which figure 4.13(a) suggests is a reasonable approximation

for θ > 36◦ on the smooth base. Lower inclinations have a lower value of sz,

indicating more curvature of the profile. Indeed, for the lowest inclinations a

value of 0.6 is attained, suggesting that a Bagnold profile is also possible for a

smooth base.

The rough base exhibits a larger range of sz as can be seen in figure 4.13(b).

At the very lowest inclinations, the value of sz is small and suggests the presence

of a static region at the base of the flow, similar to those seen in Taberlet et al.
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(2003). These are only seen for inclinations below the maximum friction angle

θ2. For inclinations > 36◦ and Ib < 1, szφ remains very close to 0.6, suggesting

a Bagnold profile. In this region, there is a slight decrease with I as seen before

by Forterre & Pouliquen (2008) and Baran et al. (2006), owing to the packing

fraction decaying as I increases. For higher values of Ib, the flow becomes slightly

more dilute at the top surface and a slip velocity develops at the base. It must

be noted that for smaller values of Ib the flows have a very well defined surface,

with exceedingly few saltating particles. A combination of these two factors gives

rise to the large variations in szφ, with its value ranging from more than 0.6 to

less than 0.2.

Despite the flow remaining dense in the accelerating regime, the grains are not

acting in the frictional manner described by the µ(I) rheology. To first order, the

grains are acting as a pseudo-viscous fluid: the resistance of the fluid is roughly

proportional to Fr (see figure 4.7(a)), rather than being bounded above by µ2.

There are a number of possibilities that could account for the extra resistance

required to reconcile the rheology with the experimental data. One of them is

that the pressure is strongly non-isotropic. If the lateral pressure is much greater

than that in the vertical direction, the frictional force at the wall will be much

larger. Another possibility is the effect of air drag on the particles at the surface.

The drag force on a spherical particle is given by a Stokes drag modified by a

turbulent drag factor (see Börzsönyi & Ecke, 2006)

Fdrag = 3πµairdvc(v), (4.37)

where µair is the dynamic viscosity of air and c(v) is given by c(v) = 1 +

0.15(vdρair/µair)
2/3. This formulation has been used to successfully predict the

terminal velocities of a number of types of grains in Börzsönyi & Ecke (2006).

Taking the expression (4.37) and forming the ratio to the gravitational force gives

the relative magnitude of the drag effect

Fdrag

mg
=

18µairvc(v)

d2ρ
. (4.38)

The velocity at which the drag is equal to the gravitational forcing is around

7.5m s−1 but only affects those particles saltating away from the bulk above the
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Figure 4.14: The relative effect of gravity and the turbulent air drag on a spherical
particle falling vertically in an ambient fluid.

free surface. The corresponding Reynolds number is 750. Figure 4.14 shows the

size of this ratio as the velocity varies. After the particles are ejected, they rejoin

the flow shortly afterwards under gravity, and so this prediction of the terminal

velocity is an upper bound and will not be reached in practice. This effect is also

reduced by the flowing grains shearing the air immediately above. This means

that the ambient fluid is not at rest, the relative velocities are lower and the

drag is reduced. Another air-induced effect is the stress exerted by the stationary

air on the free surface of the flow. However, a Prandtl boundary layer analysis

reveals that this effect is small, and is around 0.1% of the gravitational forcing

(see Börzsönyi & Ecke, 2006, for more details).

It is perhaps pertinent to note that the kinetic theory of Lun & Savage (1987),

which is compared to the µ(I) rheology in Forterre & Pouliquen (2008), is not

able to predict such high total friction coefficients either.

The hstop definition of µ1 and µ2 combines properties of the flowing grains and

the bed. It may be that at high I the nature of the flow near the surfaces changes

and that it can generate much larger effective friction. Different regimes, such

as the “supported” regime of Taberlet et al. (2007), have been observed, though

they found roughly the same friction.

The pseudo-viscous effect for large I suggests that including higher order terms
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as an extension to the µ(I) rheology might be a good approximation. Such a form

is

µ(I) =
µ1I0 + µ2I + cI2

(
d
h

)α

I0 + I
, (4.39)

where the constants a, b, c and α are used as fit parameters. This form captures the

general linear behaviour of µ for large I but is unable to capture the second-order

dependence on either q or θ. The result of the fit can be seen in figure 4.15(a).

Plotting µ as a function of either Fr or Ib leaves unresolved dependencies on

both q and θ. There are three non-dimensional groups in the problem, namely

Fr, n, and θ, which can be used to find a scaling law. Defining a combination of

the first two as

Iα =
Fr

nα
(4.40)

gives a modified version of Ib which collapses the data over q for each inclination

for a choice of α = 1/3 for accelerating flows. The fit is shown in figure 4.15(b)

which suggests a linear dependence between µ/ tan θ and I1/3

µ

tan θ
= a(θ)I1/3 + b(θ) (4.41)

for some choices of a(θ) and b(θ). The data suggest that a and b share an asymp-

tote as well as the position at which their gradient tends to zero and as such, the

functional form of the hstop curve in equation (3.21) is well suited to this. We can

write

a(θ) = B

(
tan(φ2)− tan θ

tan θ − tan(φ1)

)
(4.42)

where, upon fitting, B = 0.03, φ1 = 23.1◦ and φ2 = 55.9◦. This gives the

representation
µ

tan θ
= a(θ)

[
1.5 + I1/3

]
+ 0.75. (4.43)

This relationship removes the friction angles deduced from hstop experiments

from the rheology and replaces them with two other generalised friction angles.

The larger angle corresponds to the point after which µ/ tan θ is constant, and is

coincidentally the highest inclination for which experiments were carried out. At

these high inclinations, µ saturates at around 0.8 tan θ ≈ 1.1 which is much higher

than the upper friction coefficient µ2 ≈ 0.6 as measured from hstop experiments.
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Figure 4.15: Fitting the total friction µt (a) Fit with I
2 extension to the µ(I) rheology.

Solid lines are the experimental data, black, dashed lines are the fit curves. The fitting
parameters were µ1 = 0.58, µ2 = 0.82, I0 = 0.37, c = 0.0015, α = −2. (b) µ plotted
against I1/3 (time-steady flows removed). Black, dashed lines give fit of data using the
θ dependence in equation (4.43).
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In order to reconcile this analysis with previous studies, it is necessary to in-

vestigate the angles for which equilibrium states exist in more detail. We plot

µ as a function of Ib for two inclinations in figure 4.16 and against Fr in the

inset. The first inclination, θ = 34.1◦, is just below the angle of vanishing hstop

θ2 = 34.2◦, and the second one above at θ = 36◦. At the lowest mass fluxes, both

inclinations indeed exhibit flows with a constant friction coefficient. For the lower

inclination, these flows are not accelerating, as constant Fr (or equivalently Ib) is

achieved down the slope. At the higher inclination, Fr and Ib decrease as the flow

progresses. The start point for each flow is marked with a dot. The values of µ

for these flows are in agreement with the values recorded in the hstop experiments,

and therefore also agree with the numerically-investigated rheology. A slight com-

plication is introduced as µ is no longer a single-valued function of either Fr or

Ib, possibly due to the stabilising influence of the sidewalls. The change in µ at

θ = 36◦ as q varies is around 7%, and drops to 4% for 34.1◦. It is also interest-

ing to note that accelerating flows for these low inclinations are collapsed over q

when using I1/3 as the appropriate non-dimensional number, whereas the flows

with constant µ are not. Steady µ flows for θ < θ2 are well explained by the µ(I)

rheology as can be seen in figure 4.17. These flows are shown to follow the broad

pattern predicted by the µ(I) rheology although there is some discrepancy. This

discrepancy can partially be attributed to the presence of side walls. Including a

sidewall friction such as that in the numerical model of chapter 2 suggests that

µt = µw
h

w
+ µb(I), (4.44)

however fitting this functional form to the data in figure 4.17 with constant µw

does not give good results. This expression does however gives some indication of

why the same µt can exist for different Ib in steady flows i.e. through the varying

height changing the total friction. It should be noted that the value of µ2 taken

from the hstop experiments presented in figure 3.20 does not give a particularly

good fit to the data in figure4.17. A slightly higher value of µ2 = 0.8 has been

used instead.

In contrast, the accelerating flows need an extra rheological contribution to

explain the behaviour. It is proposed that I1/3 gives the appropriate scaling for
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Figure 4.17: Constant velocity flows for low inclinations on the rough base. Note
there are a number of admissible I for each inclination possibly due to the effect of
sidewall friction, thus making a best fit using the µ(I) equation unsuitable. The solid
line represents a typical µ(I) curve with µ1 = 0.53, µ2 = 0.8 and I0 = 0.2. These
parameters gave a reasonable fit. Using the hstop measurement for µ2 did not give a
good fit to the data.
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Figure 4.18: Log plot of n against Ib for the rough base.

these extra contributions.

A further indication of a difference in regime can be seen in figure 4.18, which

shows a log-log plot of the dependence of h/d on Ib. Manipulation of the µ(I)

equations (2.32) and (3.21) gives

Ib = −αn−1 + β

(
tan θ − µ1

µ2 − tan θ

)
. (4.45)

The low inclinations for which this rheology is expected to work does exhibit

a slope of gradient −1, but quickly changes as the inclination increases. The

accelerating flows exhibit a behaviour such that Ib ∼ n−3. Given that µ is no

longer simply a function of a parameter such as Ib, and different scalings are

required to collapse the accelerating and constant µ regimes, it is possible that

other flow variables such as granular temperature are needed to fully describe the

system.

The form proposed in equation (4.43) predicts that the flow cannot reach a

steady velocity above θ = φ2. Below this threshold, the terminal state is given

by I1/3 = 0.25/a(θ)− 1.5. Above this threshold, the total friction µ is always less

than the maximum value µ = 0.75 tan θ, resulting in a constantly accelerating

flow.
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Figure 4.19: Terminal state of DEM flow simulations using different particle species.
The time-steady state value of Ib is plotted for various q and θ. Reproduced from
Holyoake & McElwaine (2011), using the method described in Börzsönyi et al. (2009).

However, DEM simulations for flows on high angles suggest that non-accelerating

states can exist, although they are not dense throughout their depth. The code

used to produce these results is a soft particle model using a damped linear spring

for the normal force and a Coulomb friction for the tangential force. The method

is the same as that explained in Börzsönyi et al. (2009). The particles in the simu-

lation have an inter-particle friction coefficient of 0.5 and coefficient of restitution

0. The particle stiffness was chosen to ensure that the maximum particle overlap

in a head-on collision was less than 1% of the particle diameter. The basal surface

is formed by a mix of two types of particles in a random configuration. Figure 4.19

shows the steady state value of Ib for multiple θ, q, and particle species. At these

high values of Ib, the particle stiffness and size become important as the dissipa-

tion during inelastic collisions provides another mechanism for energy dissipation.

For lower inclinations, the variation in terminal Ib is very small between different

particle species. For the high inclination flows, the final state is periodic. The

flow separates from the base and shortly after falls, colliding with the base and

dissipating energy. This allows µ → tan θ, at least in an averaged sense. In order
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Figure 4.20: (a) The non-dimensional terminal velocity of full-width flows on a rough
base as predicted by the fit formula (4.33). Each line represents the terminal velocities
at a given inclination as the flux varies. (b) The terminal value of I, Iterm as it varies
with q and θ. The value of h used in the calculation is calculated from q, assuming a
constant φ.

to replicate this in the lab, the chute would need to be many kilometers long and,

at these speeds, air drag would be important. It is also not clear if the ambient

fluid would have a significant effect on the flow in this state.

The fitting function in equation (4.33) can also be manipulated to give a pre-

diction of whether a terminal velocity vterm exists. If γ > 0, then vterm can be

calculated by v2term = u20 + δ/γ. For flows with a constant velocity in the chute,

vterm is taken directly from the data. Although care must be taken when extrap-

olating data outside of the observed range, all but one of the terminal velocities

were less than double the velocity at the end of the chute. This indicates that it

is not unreasonable to expect that the flow, when at the extrapolated velocity, is

in a dense state similar to how it is observed in the chute, and so the extrapo-

lated terminal state is a likely outcome. If the flow undergoes a phase transition

then the development is likely to be substantially different to the extrapolated

development.

Figure 4.20 shows the terminal velocity vterm and terminal inertial number Iterm

(when they exist) for flows over the rough base. Figure 4.20(a) shows vterm as
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a function of the control parameters θ and q. A clear structure is shown where

the terminal velocity is a strong function of the inclination, especially at high

inclinations. Indeed, for flows over 51.8◦, no steady flows were predicted by the

extrapolation, perhaps indicating that there is still an upper limit to the friction,

albeit much higher than the values measured from hstop experiments. The depen-

dence of vterm on the mass flux q is also increasing. However, as q increases, the

dependence weakens suggesting that the terminal velocity will become indepen-

dent of the mass flux (and therefore the flow height). This is possibly due to the

wall friction giving an increased contribution as the flow deepens.

The second subfigure 4.20(b) shows the terminal value of the inertial parameter

Iterm as a function of θ. If I is indeed the only parameter that governs the flow

then we would expect total collapse of the data in this graph. However, there is

still significant spread. Plotting the data in terms of I1/3 as in figure 4.15(b) does

not significantly improve the collapse of the data either.

The predicted values of the normalised steady state mass hold-up ñ = nφ/0.58

can be seen in figure 4.21. In contrast to the µ(I) rheology, which predicts that

flows on inclinations θ > θ2 should have an indefinite, linear acceleration, we see

that steady states are possible in this region. Also shown is the shaded region

underneath the hstop curve, in which a heap will form with a flowing layer on top

of it. At the other end of the space, for high inclinations and small ñ, we see the

predicted steady state for the separated flows. As no data was available for the

dilute flows (as n is ill-defined), the boundaries of this area of the phase plane

were estimated.

There are no data for very low fluxes q < 1 kg s−1 as the apparatus tended to

produce a low energy, uneven saltating state, which is initiated by the drop from

the hopper to the chute, making n ill-defined.

The flows over a smooth base did not exhibit such a rich range of behaviours.

The data set was much smaller as inelastic collapse affected a large proportion of

the flows, and has therefore been excluded from most of the analysis. Figure 4.7(b)

shows that µt is invariably lower than on the rough base, as the smooth base

gives less resistance. The range of µ seen over the small base is much lower, and

is almost uniform for all Fr. This fits in well with the hstop data, which only

gave a difference of 0.2◦ between θ1 and θ2. As a result, the µ(I) model with
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constant µ gives good agreement with the data. It it not clear if the flows on the

smooth base will approach a terminal velocity in the same way as the rough base.

Since the acceleration of these flows is approximately linear, the fit described by

equation (4.33) is degenerate for three parameters, meaning that γ, and therefore

the extrapolated terminal velocity, is very sensitive to small amounts of noise.

However, this zeroth order, sliding block model cannot capture the cross-slope

velocity variation. As the flow accelerates, mass conservation dictates that if

φ stays constant, then the height must decrease and the flow must elongate.

This elongation will then excite an internal flow structure, generating transverse

gradients in the stress and ultimately the cross-slope velocity profile seen at the

surface.

Figure 4.22 shows an interesting dependence of µ on the mass flux for the

smooth base. Low mass fluxes demonstrate the expected behaviour of µ increasing

with Fr. However, as the mass flux increases, the gradient of this slope decreases

until it becomes negative. This effect is seen for all of the fully dense flows

investigated here. Having a negative gradient of µ(Fr), indicates that in this

regime the flows will accelerate faster and faster until a flow transition occurs or

other forces come into effect.

4.6 Conclusion

Previous work on granular flows has concentrated on I < 0.5 (MiDi, 2004). The

µ(I) rheology and the flow rule Fr = α+β h
hstop

have been successful in predicting

the dynamics of such flows. However, they suggest that flows on slopes steeper

than θ = tan−1 µ2 will accelerate at a constant rate. Our experiments show that

these models are inaccurate for larger θ and that steady flows may be possible

on much steeper slopes. As such, this is an important prediction that should be

tested in the future with different apparatus. We see a maximum total friction

value of µt ≈ 1.1 which is much bigger than the value of µ2 ≈ 0.6 derived from

measurements of hstop. We analyse the potential effect of air drag on the surface

particles and conclude that it will have only a small effect. We also explore other

scalings that collapse the total friction for flows that were observed to be in an

accelerating mode.
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A number of interesting instabilities were also observed. We found density

instabilities where a dense core in the middle of the chute is flanked by dilute

regions which grow in size down the chute. This process is similar to the inelastic

collapse phenomenon seen in the literature and is explored in more detail in

chapter 5.

We also saw a transition where the entire bulk of the flow becomes energised,

unstable and dilute. A transverse velocity profile instability in the form of longi-

tudinal vortices was also seen for intermediate inclinations.

Flows over the smooth base are well-modelled by constant total friction. Al-

though there was some complicated variation with the Froude number and the

flow depth, it was small compared to the range of the total friction on the rough

base. However, a significant cross slope velocity variation was observed that is

incompatible with standard granular models (such as Savage-Hutter), which pre-

sume a plug flow over smooth surfaces. Development of a model to capture these

effects remains a subject for future work.
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5

Inelastic Collapse

5.1 Introduction

In this chapter we examine an instability that occurs over a large portion of the

phase space explored by our experiments in chapter 4. For low mass fluxes on a

given inclination, the flow collapses into a dense central region flanked by two low

density, high temperature regions. We made a brief mention of this in section 4.4.1

and we examined in which portion of the phase space this phenomenon occurs, as

shown in the phase diagram 4.21. A typical flow that undergoes this transition

can be seen in figure 5.1.

A number of similar phenomena have been observed in granular media before.

Perhaps most fundamental in nature are the numerical investigations of Benedetto

& Caglioti (1999) who observed one-dimensional collapse for sufficiently inelastic

particles in which the end state had all particles touching in one chain. Numerical

simulations of two-dimensional assemblies of particles have been observed to un-

dergo clustering, which is an instability whereby growing inhomogeneities in the

density field occur (Alam & Hrenya, 2001; Goldhirsch & Zanetti, 1993; McNamara
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(a) Clustering (b) Stripe formation

Figure 5.2: Clustering and stripe formation of inelastic particles. Reproduced from
simulations by Goldhirsch & Zanetti (1993)

& Young, 1994). Heuristically, this instability is the result of small fluctuations

in the density field, where the density is slightly larger than the normal value.

As a result, the collision rate of the particles increases, and therefore the rate of

energy dissipation in the area also increases. As a result, and in contrast to a nor-

mal gas, both the temperature and the pressure decrease as the density increases.

This effectively creates a sink where the energy of other particles colliding with

the cluster gets absorbed and the size of the dense cluster increases. Clustering

is often a precursor to inelastic collapse, where the particles undergo an infinite

number of collisions in an finite amount of time, i.e. remain in continuous contact

with each other. As a result, the particles will move as a plasticly deforming

agglomeration unless other particles with sufficient energy collide with the group

and break it up.

As the application of rheologies based on the Coulomb friction law (such as

the µ(I) rheology) is unsuitable for low density flows, we turn to the granular

kinetic theory of Lun et al. (1984), supplemented by the mean-field boundary

conditions of Forterre & Pouliquen (2002). Chute flows have been investigated

using this theory before (Ahn et al., 1992; Ahn & Brennen, 1992; Anderson &

Jackson, 1992), with some success for collisional flows. However, these studies

have focused on two-dimensional flows, such that only a depth dependence is
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captured. This makes this work of limited relevance for describing the lateral

variation that we observe experimentally.

Forterre & Pouliquen (2002) broke the transverse symmetry by extending this

theory to look at the formation of longitudinal vortices which they argue are

analogous to Rayleigh-Bénard convection. In their analysis, however, the flow

was assumed to be infinitely wide, and so sidewalls played no role in governing

the flow. A linear perturbation analysis was performed on a steady solution of

the equations, the result of which gives good qualitative agreement with their

experimental observations of vortical structures aligned with the flow. In our

analysis, we look to include the effect of the walls on the flow and expect at

most a qualitative agreement with our experimental data, as the kinetic theory in

its basic form is known to have limitations in dense regions (Tan & Goldhirsch,

1997).

Recent adaptations of the kinetic theory include the use of a heuristically de-

rived correlation length (Jenkins & Berzi, 2010) to account for the overestimation

of the inelastic dissipation at high φ. Alternatively, critical state theory from soil

mechanics (Berzi et al., 2011) can also be used to correct the predictions for dense

flows. However, these two modifications add a computational complication not

necessary to capture the qualitative basic behaviour of our experimental obser-

vations. We proceed using the theory of Lun et al. (1984) with the addition of

boundary conditions used in Forterre & Pouliquen (2002).

5.2 Background

The flows we have investigated are low temperature and dense and so a Coulomb

rheology is, in principle, appropriate. However the presence of low density re-

gions imply that locally the production of heat at the walls by the shear and the

inelastic dissipation are no longer balanced. This would indicate that in order to

model this phenomenon we must include the evolution of the temperature in a

suitable theory. In low density areas of the flow the particles are strongly agitated,

and the dominant momentum transfer mechanism are collisional rather than fric-

tional contacts. This, traditionally, is named the kinetic or collisional regime.

The dominance of collisional transport between grains suggests that a statistical
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physics description may be suitable. As such, we introduce a transport equation

for the granular temperature, which plays a similar role to the thermodynamic

temperature in standard kinetic theory. This temperature is distinct from the

thermodynamic temperature discussed in the introduction, but is quantified in a

similar way. The granular temperature T is, in general, the covariance tensor of

the grain velocities.

Some of the first micro-mechanical studies of this regime were presented almost

simultaneously by a number of people, e.g. Lun et al. (1984) and Jenkins &

Savage (1983) to name but two. These theories were motivated by the studies of

Chapman & Cowling (1939) pertaining to the dynamics of dense gases. However,

there is a key difference between a granular gas and a thermal gas, namely the

inelasticity of the collisions. As such, a granular gas must be subjected to a

constant flux of energy in order to maintain its excited, collisional state, otherwise

the gas will quickly condense to a dense flow. The kinetic energy contained in the

granular temperature is then given by the balance between inelastic dissipation,

the work of the shear on the strain and a heat flux. Naturally, the character of the

boundaries can also determine whether there is a net production or dissipation

of energy there. There are typically two different ways to input energy into such

a flow to maintain the collisional regime. We can do this either by vibrating the

walls, by shearing the material along a surface by applying a body force. The

particles then bounce off the surface, transferring their momentum parallel to

the surface to the direction normal to it. In both cases, a flux of temperature is

created at the wall. In our experiments we generate temperature by shearing the

flow along the walls.

5.3 Theory

The temperature T , which is crucial to expressing the equations of a granular

thermo-fluid, is defined as T = 1
3
< δu2 >, where δu are the random velocity

fluctuations about the mean value. Following Jenkins & Richman (1985) we have

assumed an isotropic temperature which is given by

T =
1

3

(
〈u2〉 − 〈u〉2

)
. (5.1)
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In the presence of gravity, the standard hydrodynamic equations are modified

by an inelastic dissipation term γ, which means that the energy equation is non-

conservative. The equations are derived by considering the collisional flux of mass,

momentum and energy in a control volume. They are

Dρ

Dt
=− ρ∇ · u, (5.2)

D (ρu)

Dt
=ρg +∇ · σ, (5.3)

3

2

D (ρT )

Dt
=σ : ∇u−∇ · q − γ. (5.4)

The rate of change of the temperature is governed by three terms. The first,

σ : ∇u, represents the production of T due to the work of the stress over the

shear. The second term represents the flux of the fluctuation energy, and the

third is a dissipative term caused by the inelastic nature of the grains’ collisions.

The difference with normal thermodynamics appears in the form of the constitu-

tive relations. Lun et al. (1984) modelled the granular material as a compressible

Newtonian liquid with variable viscosity. As such, the stress tensor takes the form

σ = − [p(φ, T )− ξ(φ, T )∇ · u] I + 2η(φ, T )S. (5.5)

The deviatoric part of the stress is

S =
1

2

(
∇u +∇u⊤)− 1

3
(∇ · u) I, (5.6)

for some functions p, ξ and η.

At this point, we take the simplest possible model that might model the phe-

nomena and as such we assume that the flow is unidirectional and takes the form

u = (u(y), 0, 0), (5.7)

which represents a depth-wise plug as there is no depth dependence. This is

motivated by our surface measurements of the velocity, which show that in the y

direction the velocity is small compared to the downstream direction as can be

seen in figure 4.10 on page 115. In this case, the conservation of mass is trivially
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satisfied with ∇ · u = 0.

The kinetic rheology also specifies the heat flux q and the internal dissipation

γ as

q =− κ(φ, T )∇T, (5.8)

γ =
ρp
d
f5(φ)T

3/2. (5.9)

Here, we have adopted a classic Fourier heat diffusion for the flux q, with the

non-constant thermal diffusivity denoted by κ. However, a full model also takes

a further contribution from the term ∇φ into account. However this term only

serves to increase the computational complexity while giving only a negligible

increase in accuracy (Forterre & Pouliquen, 2002; Woodhouse et al., 2010), and

so we neglect it.

As in classical gases, the pressure p, the viscosity η and the thermal conductivity

κ are functions of the local density (or, equivalently, the volume fraction φ) and

the temperature T . They are given by

p(φ, T ) =ρpf1(φ)T, (5.10)

η(φ, T ) =ρpdf2(φ)T
1/2, (5.11)

κ(φ, T ) =ρpdf3(φ)T
1/2. (5.12)

The dimensionless functions fi are given in table 5.1. We note that the dissipation

(which does not occur in classical studies of gases) is dependent on the inelasticity

of the particles through the coefficient of restitution e. In practice, for dense

assemblies of grains the tangential slip caused by relative spinning motion also

dissipates energy, but the current theory neglects this.

These functions contain a dense gas correction in terms of the radial distribution

function. We choose the form given by

g0(φ) =

(
1− φ

φm

)− 5
2
φm

, (5.13)

as in Lun & Savage (1986). This form is suitable for free-surface flows since the

resulting equations have no singularity as φ → 0 (Forterre & Pouliquen, 2002).
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f1(φ) = φ+ 4e′φ2g0(φ)

f2(φ) =
5
√
π

96

[
1

e′(2− e′)

1

g0(φ)
+

8

5

3e′ − 1

2− e′
φ+

64

25
e′
(
3e′ − 2

2− e′
+

12

π

)
φ2g0(φ)

]

f3(φ) =
25
√
π

16e′(41− 33e′)

[
1

g0(φ)
+

12

5
e′(1 + e′(4e′ − 3))φ

+
16

25
e′2
(
9e′(4e′ − 3) +

4

π
(41− 33e′)

)
φ2g0(φ)

]

f5(φ) = (1− e2)
12√
π
φ2g0(φ)

f6(φ) =
π
√
3

6φm
g0(φ)

f7(φ) = (1− e2w)
3
√
3π

12φm
φg0(φ)

Table 5.1: Dimensionless constitutive functions e′ = 1
2
(1 + e). The wall-particle resti-

tution is given by ew.

With the assumptions made above, the stress tensor reduces to

σ =




−p η
∂u

∂y
0

η
∂u

∂y
−p 0

0 0 −p



. (5.14)

We further simplify the equations by using a depth-integrated approach. We do

this by assuming that T = T (y) and φ = φ(y), and therefore there is no variation

through the depth. The vertical momentum balance then yields a hydrostatic

balance given by

p = (h− z)φρpg cos θ. (5.15)

We take the average value of the pressure to set the relationship between φ and

T according to equation (5.10)

p̄(φ, T ) =
h

2
φρpg cos θ = ρpf1(φ)T. (5.16)
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The depth integrated y-momentum gives

h2

2
φρpg cos θ = c0 (5.17)

across the chute. The x-momentum equation is slightly more complicated

0 = ρpgφ sin θh + h (ηu′)
′ − τ, (5.18)

with the basal shear stress given by τ = σxz|z=0.

Finally, the last field equation is given by the temperature evolution, which

simplifies to

0 = hηu′2 + h (κT ′)
′
+ qb − hγ. (5.19)

Here, we have defined the basal flux as qb = q.ez|z=0.

The problem is closed by specifying the tractions and the heat flux at the

walls and the basal surface. We do this by adopting the approach of Forterre &

Pouliquen (2002) and imposing boundary conditions on the mean field. A more

physically grounded approach such as that of Woodhouse et al. (2010) imposes

boundary conditions using the surface roughness to quantify the parallel to normal

momentum transfer. As we have seen this phenomenon on a smooth base, the

complexity added by using this more rigorous physical argument is would not add

to the understanding of the problem. As the boundaries are stationary, we define

the properties in terms of the flow velocity at the wall:

t · σ · n =η⋆(φ, T ) |u| , (5.20)

q · n =u · σ · n− γ⋆(φ, T ). (5.21)

The function η⋆ is given by

η⋆(φ, T, ψ) = ψρpf6(φ)T
1/2. (5.22)

This includes the factor ψ which is to be treated as a fit parameter. It is related to

the rate of conversion of momentum from the wall-tangential to the wall-normal

direction, and so larger values of ψ are to be expected for rougher walls. Forterre &

Pouliquen (2002) gave typical values for this in the range 0.05–0.1. The boundary
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dissipation is given by

γ⋆(φ, T, ew) = ρpf7(φ, ew)T
3/2, (5.23)

and is a function of the coefficient of restitution between the particles and the

wall.

Using these quantities we may write the basal stress and basal heat flux as

τ =σxz = η⋆(φ, T )u, (5.24)

qb =uτ − γ⋆ = u2η⋆ − γ⋆. (5.25)

The walls are treated in the same way such that, at y = 0, the boundary conditions

are

ηu′ =η⋆u, (5.26)

−κT ′ =u2η⋆ − γ⋆. (5.27)

We exploit the symmetry of the flow to write the derivatives of u′ and T ′ at the

midpoint of the chute as 0

u′ =0, (5.28)

T ′ =0. (5.29)

The final condition, which will be used to specify c0, can take one of two forms.

We can either choose to specify the total mass in the simulation as the flows are

steady, or specify the mass flux. It was found that specifying the mass flux lead

to a numerical instability where h increased without bound and φ decreased. We

therefore specify the mass

m = ρp

∫ w

0

hφ dy. (5.30)

We solve in terms of the non-dimensional quantities below

u =
√
gdũ ℓ = dℓ̃ σ = ρpgdσ̃ T = gdT̃ , (5.31)

where ℓ is any length. For ease of notation, the tildes will be omitted from now
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5.4 Data preparation

on. Non-dimensionalizing in such a way as to keep all quantities of a similar

order enables the solver to converge more rapidly. We use a three-point stencil

to evaluate both first and second derivatives such that solutions are of order δy2.

If the grid resolution is N then we have a square algebraic system of 4N + 1

variables that can be solved using a non-linear matrix solve routine in MATLAB.

A sensible initial guess for the solution must be supplied to the solver if con-

vergence is to be successful. Such an initial value can be formed by considering

the effect of the sidewalls as a perturbation of the background flow. As such, we

solve the above equations with ∂y = 0 to obtain values for h, φ, T and u. Writing

the total mass in the simulation as

m = φhN
w

Nd
= cφ1/2w, (5.32)

we solve for the steady angle in terms of φ

tan2 θ =
ψf6

[
m
w
(1− e2)f5

φ
+ (1− e2w)f7

]

f 2
1

. (5.33)

Using this, we can calculate the steady states for different slope angles. An

example of this can be seen in figure 5.3, which shows that two states can exist

for a given pressure over a limited range of angles.

5.4 Data preparation

In order to extract the width of the dense core from the experimental data, we

use a variety of image processing techniques. We have two edges that we need to

detect: the position of the wall and the edge of the dense region. As the smooth

basal surface is reflective, we can determine the low volume fraction areas of the

flow by the increased intensity of the image in this region.

We detect the walls by averaging over all pictures at a given position on the

chute and employing Sobel vertical-edge detection, which produces a binary im-

age. This is usually ill-defined so we morphologically open the image with a large

vertical line before closing it again with a small disk. This produces an area of

the image that is a few pixels wide. Taking the horizontal average of the locations
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Figure 5.3: Results for applying kinetic theory to a flow with no sidewalls (i.e. no
lateral variation) e = 0.5, ew = 0.5, ψ = 0.1 and c0 = 1.28
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5.5 Results

of this region gives the location of the wall very accurately. This can easily be

verified by eye.

Detecting the edge of the dense region is somewhat trickier. There are a number

of reasons for this. First, the edge is not well-defined as, in practice, there is

a smooth transition in the volume fraction from the dense core to the sparse

edge regions. We first take a time-averaged picture of the chute when the dense

region occupies the entire width. Removing the remaining high-frequency noise

from this image leaves an even illumination map that is devoid of any grain

level fluctuations. We then take this illumination map and divide an average of

pictures taken further down the slope by it. Dividing this averaged image with the

illumination map clearly marks where the base can be seen through the particles.

Normalising this essentially gives an averaged picture at a position down the slope

with good contrast and a clear transition from the dense to the sparse region.

We then fit a regularised 2D step function with variable transition width to

give a representative width of the dense area. If the x coordinate of the centre

of the image is given by x0 then we define the local coordinates in the image as

ξ = x− x0 and ζ = y. We can then write the greyscale intensity of the image as

I = I(ξ, ζ). Fitting the functional form

I =
α2 − c

2
tanh

(
ζ − (β2ξ + γ2)

λ2

)
− α1 − c

2
tanh

(
ζ − (β1ξ + γ1)

λ1

)
, (5.34)

allows us to extract the width of the flow. The fit parameters here are given by

αi, βi, λi and c.

The width of the flow w at x is then given by w(x) = (β2−β1)(x−x0)+(γ2−γ1).
However in figure 5.4 we plot the flow width averaged over the x-range of the image

(∼ 20 cm at a given position down the chute. Effectively giving w(x0) = γ2 − γ1

for each x0. This, as with our velocity data in previous chapters characterises the

flow collapse over ∼ 10 points down the slope.

5.5 Results

The evolution of the width of the dense region for flows that undergo inelastic

collapse can be seen in figure 5.4. We see that the flow invariably starts attached
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Figure 5.4: The width of the flow w, normalised by the chute width W as the flow
progresses down the slope for various inclinations and mass fluxes on the smooth base.
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5.5 Results

to the walls and detaches once the shear at the wall is sufficiently strong. The

width of the high density region appears to tend to a limit.

The numerical solution to the equations are defined by three control parame-

ters. For a fixed inclination, these parameters are the total mass hold up m, the

momentum transfer coefficient ψ and the particle–wall restitution coefficient ew.

The ability of the solver to find a solution was very sensitive to the initial guess.

The procedure outlined above produced valid solutions for most masses, but the

solver did not find a solution for low mass holdups i.e. there was a minimum m

below which no solutions could be found.

Choosing an appropriate combination of ψ and ew that makes the wall a

heatsink produced continuous, smooth solutions that converged rapidly. How-

ever, these predicted a dense region at the walls and a sparse region in the centre

of the chute — the opposite of what we have observed experimentally. Choosing a

combination of ψ and ew such that the walls have a net flux of heat away from the

boundary (as in our experiments) produced solutions with a numerical boundary

layer. This was fixed at 3 points for all resolutions, the same size as our stencil.

A boundary value solver was also tried with similar results. This grid dependence

means that our simple model does not capture the essential properties of our

experiments.

We have also observed this phenomenon of a dilute region appearing at a bound-

ary at the basal surface. On a rough base, this manifests itself at high inclinations

(> 46◦) and the effect can be seen through the total friction µ. When the sep-

aration occurs, µ is relatively small when compared with lower inclinations (see

figure 5.7), and also becomes independent of the Froude number and the mass

flux.

The thickness and character of this basal layer is governed by a complicated

dependence on other flow parameters. DEM simulations of flows allowed to reach

equilibrium show that the nature of the basal layer depends strongly on the in-

clination. Figure 5.6 shows the results of time-steady flows containing different

sized particles, one large, one small and an equal mixture of the two by volume

(The ratio of the diameters being 1.5). The vertical density profile is well-fitted
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Figure 5.5: Results of computation for inelastic collapse using kinetic theory. The
parameters used are m = 1500, e = ew = 0.6, θ = 25◦, ψ = 0.05. The solution is to
machine precision, but the discontinuity of the gradient suggests that the solver has not
found a valid solution. The location of the discontinuity is dependent on the resolution.
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Figure 5.6: Height of the low density layer at the basal surface in DEM simulations
allowed to reach a fully developed state. Small particles have d = 4/5, large particles
have d = 6/5, mixed consists of an equal volume of each particle type. Reproduced from
Holyoake & McElwaine (2011).

by the regularised step function

φ(z) =
1

2

[
tanh

(
z − z0
l0

)
− tanh

(
z − z1
l1

)]
,

which gives regions of approximately constant volume fraction. At the base, a

low density shear layer of thickness l0 supports a high density passive overburden.

For all particle species, the thickness was shown to be monotonically increasing

with the slope angle. There are two transition points that can be seen, one

where the layer first separates from the base, and a second one above which the

height of the layer increases rapidly with the inclination until the entire flow

becomes diffuse and kinetic. This density inversion phenomenon and the velocity

independence of the friction coefficient have also been reported experimentally in

Taberlet et al. (2007). However, in contrast to Taberlet et al. (2007), such flows

were seen for high inclinations, far above θ2, indicating that a much larger energy

input is needed for our material to maintain a supported state, possibly due to

the increased rolling resistance and therefore the increased dissipation caused by
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Figure 5.7: µt as a function of Fr. Coloured by inclination. The constant friction at
high inclinations is in agreement with numerical simulations of Taberlet et al. (2007)
for a flow supported on a highly agitated, sparse, basal layer.

the irregularity of our particles’ shape.

For our steepest flows on the rough base, as seen in figure 5.7, the friction is

constant. This is in agreement with the numerical simulations of Taberlet et al.

(2007) who identify that the basal layer gives a constant effective basal friction

which is independent of velocity. For sufficiently high inclinations and low mass

fluxes the agitation of the grains by the surfaces is large enough for the entire flow

to be in the dilute regime (see figure 4.1). These very energetic flows over the

rough base (θ > 52◦, q . 2 kg s−1) have been excluded from all of the analysis in

this thesis as the saltating particles form an ill-defined surface, and hence neither

height or velocity data are available.

5.6 Conclusion

In this chapter we have looked at a phenomenon whereby the flow of a granular

material undergoes a collapse with a dense central region appearing, flanked by

two low density regions. The experimental data suggest that the width of the

dense region of the flow tends to a limit as the particles progress down the slope.
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5.6 Conclusion

We attempt to model this phenomenon using a simplification of the granular

kinetic theory of Lun et al. (1984). We model the interaction with the walls as

a heat flux generated by the slip velocity, modelled as a Fourier heat conduction

law. However, the appearance of a numerical boundary layer, the discontinuity of

the gradients, and the grid dependence of the solution suggest that our model is

ill-posed. The drastic assumptions of constant velocity, density and temperature

profiles through the depth may be the culprit. A fuller model based on the kinetic

theory equations that do a true depth-averaging, or a two-dimensional calculation,

may be more successful in capturing the behaviour.

We see a similar effect at the basal surface where the flow is supported on a

highly agitated basal layer. This is also seen in DEM simulations. These flows

exhibit a constant friction coefficient which is much higher than the maximum fric-

tion calculated using hstop experiments. This could have important consequences

when modelling avalanche run-out.
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6

Conclusions and Extensions

The aim of this thesis has been to study rapid granular flows in an inclined chute.

We have reviewed a frictional model that has given good agreement for equilibrium

flows where the inclination is no higher than θ2 = tan−1 µ2. Typically such flows

have inertial number I < 0.5 (MiDi, 2004). We have investigated flows on much

higher angles whilst remaining in the dense regime.

Dense chute flows that take a long distance to relax to equilibrium present an

experimental difficulty in that, if the evolution is to be tracked, then measure-

ments must be made either at multiple times or at multiple points down the slope.

We have used a recirculation mechanism to sustain flows indefinitely. These are

time-steady and therefore allow us to make multiple measurements of the flow us-

ing one set of equipment and enabling us to track the evolution. Our key finding

is that the flows exhibit a much larger value of the total friction than previously

observed. This makes it incompatible with theories such as the µ(I) rheology, as

the comparison between a numerical solution and our experimental data shows.

Further to this, extrapolation of the data on the rough base suggests that steady

flows are possible with θ > θ2. This is a strong prediction to be tested in the

153



Chapter 6: Conclusions and Extensions

future on different apparatus. For inclinations slightly bigger than θ2, we do see

steady states. This is possibly due to the effect of wall friction. However, it seems

unlikely that wall friction can account for the much larger total friction at higher

angles. We have found good collapse for the data by considering the effect of the

dimensionless height on the scaling, however, it is not clear how this relates to

the structure of the local rheology, or indeed if a local rheology is appropriate for

such flows.

On the smooth base, the flows are well modelled by a constant value for the

total friction. Although some dependence on the Froude number is exhibited, it

is complicated and small compared to the absolute value of the friction.

We have developed a finite volume code for solving the µ(I) rheology. A number

of different numerical techniques were used to try and solve the problem, but

unfortunately the equations were unstable for higher order schemes.

We have also observed a number of interesting instabilities including roll waves

and longitudinal vortices. However, over the region of the phase space covered

in our experiments, the most prolific was the lateral inelastic collapse instability,

which appears to be the result of a net heat flux from the walls into the flow. We

have attempted to investigate this numerically using a simplified, one dimensional

adaptation of the granular kinetic theory, but this was susceptible to numerical

problems at the boundaries and no physical solution was found.

For the flows on inclinations at the steepest limit (55◦), we found that for

the lowest mass fluxes both bases exhibited a fully dilute, collisional regime.

Regrettably, no experimental data was extractable from these experiments as

the height is ill defined which also meant that velocities were not extractable

from the data using our measurement systems.

There are a number of key issues raised by the investigations presented here

which, if addressed, would contribute significantly to the understanding of gran-

ular materials.

The important issues regarding the high value of the maximum friction coeffi-

cient are the following:

• Is there an upper limit of µt for a high speed granular material and if so,

what is it?

• What is the physical mechanism that gives such high effective friction?
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• What is the function dependence of µ on I for large I and what is the

correct way to incorporate h, θ and other system variables?

The difference in shape of the velocity profile over the rough and smooth bases

also remains undescribed. It is not clear why changing the basal condition effects

a change in the lateral velocity profile when the wall conditions are kept the

same. It is possible that a non-local rheology such as that proposed by Pouliquen

& Forterre (2009) is needed to account for the wall effect in the interior of the

flow.

Lastly, the phenomenon of the inelastic collapse should help to characterise

the role of boundaries in a granular flow. It is surprising to see that, even with

smooth walls and base, a large heat flux into the interior appears, causing the

flow to become dilute. This phenomenon almost certainly changes the interaction

of the fluid with the walls, which would result in a different value of the measured

total friction. It is not clear if this effect could be accounted for by a modification

to a frictional rheology or not.

It is hoped that the substantial body of software that has been written to

calibrate the measurement systems and automate the process of data collection

will be used in further investigations of granular flows in the chute. For this

reason, a limited overview has been included in the appendices.

In all, we hope that this dissertation has posed some interesting questions for

the field of rapid granular flows and that it may go some way towards contribruting

to a fuller description of them.
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A

Operative Guide

Introduction

In this appendix we give an overview of the steps needed to collect and process

data using the measurement systems described in chapter 3. The software is

written primarily in MATLAB, but we also process some data using Digiflow,

DAMTP’s in-house data acquisition software.

This guide gives an approximately chronological order for setting up and cali-

brating the systems, and afterwards collecting and processing the data.

This appendix only documents the top level commands needed to get useful

data from the chute. It is hoped that the comments in the lower level functions

and their context within the high-level functions should be enough to explain

their purpose.
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Equipment Needed

Video System

PC Hardware

The video system has a number of separate subsystems. The PC responsible

for collecting the video should be equipped with a BitFlow data acquisition card

with a daughter board. The daughter board is responsible for generating the flash

pulses.

It is recommended to have a computer upstairs for data collection, and another

computer downstairs with a remote desktop capability. This is necessary so that,

after altering the position of the traverse, it is not necessary to go upstairs to

restart the data collection process.

Camera and traverse

The camera used is a JAI-CL M4+, which will need to be correctly set up both

within DigiFlow and the SysReg utility, which is usually found on the Desktop.

This should be mounted approximately 70 cm above the chute base so that a

25mm lens will capture the entire width of the chute. The f-stop should be set

to around 5.6, which provides a good range of contrast.

Illumination system

The illumination system consists of four banks of LEDs. Each bank is connected

to its own amplifier. These should be powered by a bench power supply capable

of supplying 20V at around 2A.

The daughter board in the PC should be connected to a separate circuit board

or splitter which serves to divide the signal to each amplifier.

In order to achieve an even illumination across the field of view of the camera,

it should be noted that there is a jumper on each amplifier that changes the mode

from signal switching to permanently on.
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Laser triangulator

The laser triangulator head should be attached to the milled aluminium attach-

ment that sits in the groove of the material used to fabricate the traverse chassis.

The control box should be attached somewhere securely where there is no risk of

the cables getting caught and pulling it to the ground.

To record the illumination pulses in the height profiles, the synchron socket on

the back of the control box must be connected to the illumination system. This

requires another circuit board, which is powered using a dedicated 3.3V power

supply. This is connected to the synchron socket and also to the splitter.

The triangulator should be connected to a separate PC as per figure 3.7. It

should be checked before starting that the triangulator can record valid data from

the basal surface up to the highest flows that will be observed.

Optionally, an LED connected to the PC’s serial port can be connected to alert

the user when the triangulator has stopped collecting data. This can speed up the

collection process when conducting a large number of experiments consecutively.

Loom

This should contain the four LED cables, a power supply for the camera, the

camera data lead and the laser triangulator data lead. These should be connected

securely such that, as the traverse moves the length of the chute, it will not get

caught on the scaffolding. If it gets caught, it is surprisingly hard to spot when

performing an experiment.

Video and height calibration equipment

In order to calibrate the PIV system and remove parallax effects, a stiff, thin board

must be overlaid with a chequerboard pattern. This must be sufficiently large to

cover the portion of the chute that is visible by the camera. The board must also

be sufficiently large so as to intercept the laser sheet from the triangulator. In

this portion it is recommended to use plain paper of a similar brightness to the

sand. The plain paper will help to give a more reliable mean height from the

triangulation measurements.
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In addition to this, a number of boards of different thicknesses are needed to

place under the patterned board to alter the distance between the camera and

the calibration pattern.

Weight calibration

This requires a nylon bag with a snoot which should be able to be tied off. If

calibrating with the chute at high inclinations > 45◦, then this should also have

a scaffold chassis to prevent the bag from sagging. The bag should be connected

to the crane scale and crane using a nylon harness. To control the position of a

bag, a rope should be attached to the railings and the bag. Preferably, the rope

should not be made of natural fibre, as this will erode and eventually snap.

It may also be necessary for a second rope to keep the bag in a suitable lateral

position as the crane cannot go sufficiently far in the y direction.

The existing weight calibration can be read using the function deg2kg which

takes the aperture size in degrees and converts it to an equivalent mass flux.

Notes before starting

In this section we describe the necessary software infrastructure used to store the

data. This will be referred to throughout this manual.

The MATLAB code makes heavy use of two shell variables. These can be

defined in your .bashrc, so that they are accessible to other programs other than

MATLAB. They are

• DIRDATA: for processed data,

• DIRDATARAW: for raw data.

Each task has a directory contained within one of these two variables, i.e. the

video raw data is kept in DIRDATARAW/video and the velocity is contained within

DIRDATA/velocity.

Every file obeys a fixed naming convention:

prefix-year-month-day-number{-subnumber}-suffix{-filenumber}{.fileextension}
where the prefix is usually given by the experiment. In our case, we take the pre-

fix as rchute. The suffix describes the type of data contained within, i.e. video,
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velocity, height etc. Some examples are:

• rchute-2008-07-31-06-video

• rchute-2008-08-02-01-01-video-0092.png

• rchute-2008-08-02-01-01-video.png

where subnumber, filenumber and fileextension are optional parameters. Note

that filenumber requires a fileextension.

When coding in MATLAB, the various parts of the file names can be separated

and reassembled using the functions exp file separate.m and exp file construct.m.

Throughout the software, dates are of the form yyyy-mm-dd and times of the

form hh:mm:ss.

It is also recommended to transfer software from the laboratory computer sys-

tem to the DAMTP unix system using rsync, which helps to ensure no data is lost

and keeps data transfer times to a minimum. To use this, putty key exchange

must be set up.

Lastly, it is recommended that the MATLAB and Digiflow code is stored in a

versioning repository. Any changes to the Laser triangulator or weigher software

should also be committed to the repository.

Data is collected at 25 cm intervals from the bottom of the chute. We also

record data at a point 266 cm from the bottom of the chute which is the upper

limit of the travel of the traverse. If any data is collected at other points, the

software will interpolate any calibration data as suitable.

The lab side of the chute is the side that is nearest to the centre of the AFF

which the wall side is the opposite side.

Each basal surface has a code. The smooth base is enumerated as 0 and the

rough base is enumerated as 1. Extra surfaces can be added in surftype.m.

Starting and stopping the chute

To start the recirculation mechanism, the large main power switch on the left

must be turned on. Next, the ventilation system must be initiated by pressing

the green button near the large ventilation units. Then, the power switch on

the main panel may be turned on. At this point, it should be ensured that the

0 value of rotary encoder corresponds to a fully closed aperture in the hopper.

163



Appendix A: Operative Guide

This needs to be done each time as the rotary encoder does not record changes

in the aperture size when the power is off. Then, the red button can be pressed

to initiate the bucket conveyor and initialize the screw feed. The screw feed rate

can be changed using the blue and yellow push buttons.

To set up a steady flow, select the aperture size and wait until sand enters

the overflow. At this point, the amount of sand in the hopper remains constant

and the flow should have reached a steady state. If the sand backs up into the

overflow from the collection hopper, the rate of the screw feed needs to be reduced

to prevent backfilling into the bucket conveyor system.

To stop the system, reduce the rate of the screw feed until it has stopped and

then turn off the bucket conveyor as the mass flux in the chute reduces to 0. Allow

the ventilation system to run until no more sand is flowing.

If, for any reason, there is a risk of the sand backing up into the bucket conveyor,

shut off the screw feed at the earliest opportunity. If it can be avoided, do not

press the red emergency shut off buttons as turning the bucket conveyor on when

it is full stresses the motor and will cause damage.

Calibration Routines and Software

Before any data is collected the systems must be calibrated. It is important to

do this before data is collected as the software will automatically choose the last

set of calibration data that was measured before the data is collected.

Mass flux calibration

As the particles degrade, it will be necessary to periodically check if the mass flux

varies. The bag, crane, crane scale and two restraining ropes will need to be set up

as described in the previous section. The crane scale needs to be connected to a

computer via a USB-RS232 converter so that data may be collected. The weigher

software in the SVN repository will need to be installed before progressing.

To begin, the bag will need to be hanged from the crane scale using a nylon

sling. One rope must be tied to the hand rails on the balcony to bring the bag

slightly closer to the wall side so that it is central to the chute and all of the
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material is captured. The second restraining rope is used to bring the bag away

from the chute exit while a steady flow is set up. The snoot at the base of the

bag must be tied up securely at this point.

Once the flow has reached a steady state, make sure that the weigher program

is running and release the knot on the restraining rope to allow the bag to swing

under the end of the chute. When the mass on the crane scale reaches around

200 kg, release the knot restraining the snoot of the bag otherwise sand will pour

onto the lab floor. Stop the weigher program and repeat as necessary.

Copy the files produced by this procedure to the weigh subfolder of the raw

data directory. These may be read using the wg_read_wgh01 MATLAB script.

Height calibration

As the height information is used in the video calibration, the height systems

must be calibrated first. All data recorded for this should be put into the

DIRDATARAW/calib_height directory.

First, the curvature of the chute must be recorded. This is done by recording

height data using the software described in appendix C at the usual data collection

points. It is recommended to record for a number of seconds to eliminate noise,

and the resolution is not important. For the smooth base, the method in the file

name should be initial, and for the rough base initial-1. In general, each

base should have a set of initial-n files where n corresponds to the surface’s

enumeration.

Once the heights have been recorded and copied to the DAMTP filesystem,

calib_make_height will produce a mat file in DIRDATA/calib_height with the

important information.

Parallax calibration

We calibrate the video camera to remove parallax effects from the velocity cal-

culation. Both the raw data and processed data are in subdirectories called

calibration. This requires the chequerboard pattern board and the boards

of varying thickness described above. Here, we record a picture of the calibration

pattern at different heights. It should be ensured that the lab side of the chute

165



Appendix A: Operative Guide

should have complete squares — the chute is slightly less than 250mm and so the

squares on the wall side of the chute will be incomplete. The calibration pattern

uses 25mm squares, the postscript file for which can be found in the MATLAB

software.

In digiflow, the single_shots program should be run whilst also running the

laser triangulation software on the other PC. Digiflow will ask for the surface

type, which should be an integer as described above and for the height that the

chequerboard is currently at. This can be taken from the laser software screen

directly, rather than recording a processing the file. Digiflow will automatically

produce bmp files in the calibration directory in the relevant users directory

on the v: drive.

Measurements should be taken at around 5–10 different heights. Once the data

has been uploaded into the calibration subdirectory, the MATLAB program

calib_video_make can be run to process the data into a usable calibration map.

It is necessary to have the camera calibration toolbox from Caltech installed. (See

http://www.vision.caltech.edu/bouguetj/calib doc/)

The software will extract the corners of the squares and produce a mat file with

the relevant calibration data in it.

Both height and video calibration data can be processed by running calib_make

in MATLAB.

Video calibration

Video is recorded using the Digiflow macro Capture_to_dfm, which is the quickest

way of writing the video data to disk. It must be checked what length of time

the flash length set in the call to camera_set_frame_straddle corresponds to.

This is done by using a photo transistor and oscilloscope to check the interval and

flash length. This should then be used to calculate the velocity.

Once this calibration is done the user can begin to gather data.

Maintenance

The user should record the time that the chute was turned on and off, as this is

used to track particle degradation and for general maintenance purposes.
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When operating the chute, the user must be aware of a number of issues. The

ventilation system must be checked periodically to see if the bags of dust are full.

This should be done every 20 hours of experiment time.

There are a number of perishable elements of the recirculation mechanism.

Perhaps the most important is the bucket conveyor belt. Large pieces of black

rubber found in the sand should be taken to the technicians. If the occurrence of

the rubber increases, the belt may need to be replaced.

There are also seals on the rotating parts of the chute that degrade after ex-

tended use of the chute. If dust is escaping, they will need to be replaced.

Data collection

Here we describe the typical routine followed when conducting an experiment.

First, a steady flow should be set up. Then, the software controlling the laser

scanner should be started with the automatic option set to 1, the prefix set to

rchute and the suffix option set to height. Values for other options can be set

according to the user’s needs. The triangulator software will then wait for the

PIV pulses to arrive and then start to record.

Then, the capture_to_dfm should be run within Digiflow through a remote

desktop connection. This will then ask for details about the flow that is running.

A sub-experiment is taken to mean an experiment at a different position on the

chute, and an experiment corresponds to a mass flux / inclination combination

and the files are named accordingly.

When Digiflow asks Another subexperiment?, if the user clicks yes, then the

traverse should be moved to the next position. When the user is ready, the new

x position should be entered and recording will start again. The laser scanner

software will increment the sub-experiment number of the file automatically.

When a new experiment (i.e. the flow rate or inclination) changes, the laser

software must be exited using Ctrl-C, and the experiment number changed man-

ually (most convenient is using the -en switch on the command line). Digiflow

will increment the experiment number if the user selects yes when prompted with

nNew experiment?.

Once the experiment is complete, dfm_png in Digiflow should be run to convert
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the dfm files to png, a file that MATLAB is able to read. At this point, both the

height data and the png files should be backed up to the DAMTP system with

an appropriate rsync command.

The png files have the suffix video and are stored in the video subdirectory of

the raw data directory.

PIV

A Digiflow macro, auto_piv has been written. It automatically looks for exper-

iments in the v:\user\NAME\video directory that have not been processed into

velocity data in v:\user\NAME\velocity. This can be run overnight with no user

input. Again, when this has finished, the files should be copied to the DAMTP

system in DIRDATA/velocity.

Velocity dfi files have the suffix velocity and can be read with the MATLAB

script df_dfi_read.

Data consolidation

Once the height and velocity data have been copied to the DAMTP system, run-

ning make_experiment allows the user to select which experiments to process.

This procedure collects the velocity data, transforms them according to the appro-

priate video calibration data and transforms the heights according the appropriate

height calibration data. Instructions for recovering the data with the calibration

applied to it can be found in this routine. After running make_experiment, the

function update_files must be run to update the experiment database and the

experiment_all_average.mat file.

The resultant data structure is written as a mat file to the DIRDATA/experiment

directory. This can be loaded by providing the date and experiment number to

the load_experiment function.
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Data manipulation functions

A number of useful manipulation functions have also been written. The most

pertinent ones are listed below.

experiment average all Averages all available experiments, performs an av-

erage and writes it to expeiment_all_average.mat. This is intended for quick

and easy manipulation of the whole, averaged dataset. The file can be loaded by

running experiment_load_all.

experiment average Takes the struct in the experiment files and averages over

time and space for the height and velocity data. Horizontal, vertical and temporal

averaging dependent on the arguments.

dfi do all Takes a dfi file and transforms the velocity using the date in the

file name to load the calibration data.

experiment category Lists the user-supplied category for the experiment

experiment info The information for a given experiment

experiment plot Plots salient information for a given experiment. Takes a

while to process.

exp hash Collates all experiment information into a single file and prints it.

plot phase space covered Plots the area of the phase space covered by the

current experiments

169





B

Crane Scale Software

In this appendix we discuss the software written for the mass flux calibration

routine in section 3.2.3 on page 59.

In order to calibrate the hopper aperture size with the mass flux, it was neces-

sary to measure the mass captured in a bag over a period of time. The derivative

of the mass-time curve then gives the mass flux. The first studies carried out on

the chute by an undergraduate student suggested that the flow out of the hopper

could be in one of many states for a given aperture size with variations of as much

as 10% — a calibration curve for the hopper looked to be out of the question.

However, measurements for flows at a fixed aperture size seemed not to indicate

a large variability in the velocity or height. Visibly, the change in volume fraction

could not account for the supposed variability in the mass flux, so the method of

data acquisition was studied more closely.

In order to measure the mass flux an industrial crane scale supplied by Straight-

point (UK) capable of measuring up to 500 kg in 0.1 kg intervals through an RS232

interface. The software supplied with crane scale claimed to be capable of supply-

ing a measurement frequency of 10Hz. However, as the software designer decided
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to dump the measurement value in the cell of a spreadsheet of fixed name with a

given date format, it was not only inconvenient to collect large amounts of data,

the time at which the data arrived to the computer was only given to the nearest

second.

The maximum mass flux that we recorded on the chute was in the region of

22 kg s−1. As the capacity of the bag was around 250 kg, this meant that the error

induced by the finite sampling time alone was accounting for 9% variation in the

readings, and so it was clearly necessary to develop software with an increased

level of granularity.

The manufacturer and the supplier of the equipment refused to supply us with

source code or alternative software without charging a significant amount, and so

we decided to reverse engineer the protocol.

Initial investigations using a serial port traffic sniffer suggested that the crane

scale was reading data at over 10Hz, and that it was solely the software that was

losing information. Indeed, researching the ATMega CPU and the strain gauge

within the unit suggested that data rates this high were more than possible.

Some limited information was found regarding the basics of the closed-source

protocol regarding the hand shake, but the codes to request the data were not

available as they were probably specific to the manufacturer. After much decoding

and with some luck, it was determined that the DWORDs

0xfe,0x01,0x8f,0x08,0x0e

to the serial port elicited an 11 byte response including a start, stop and parity

bit.

Upon reversing the byte order and the endianness, a single precision number

was produced which gives the weight on the stress gauge measured in tonnes.

This was written to a file along with the time to the nearest millisecond.

File naming and general handling routines were also included to make data

collection easier.

As a result of this reverse engineering, the error in the measurement between

flows was less than 2%.
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Description File parameter Switch Default Value
COM Port comport: -cp COM1

Name name: -nm rchute
Suffix suffix: -sf weigh

Series number seriesnumber: -sn Auto
Number experimentnumber: -en Auto

Table B.1: Table of parameters for weigher.exe.

Code Operation

A copy of the software can be found in the rchute SVN repository, and is entitled

simply weigher.

The options in table B.1 can be supplied either on the command line or using

a file called settings.txt stored in the current directory.

Series and experiment numbers are automatically incremented depending on

the existing files in the current directory.

File Format

The file names have a format of

name-date-series-seriesno-experimentno-suffix.wgh01.

The content of the file is simply a series of pairs of double data types. The

first of each pair gives the weight in kilograms and the second the time at which

it was received.

These files can be read by wg_read_wgh01.m, and various utilities can be found

in the weigh directory of the MATLAB chute software.
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Laser Triangulation Software

This appendix is primarily intended as a technical reference for future users of

the Micro-Epsilon laser triangulator that has been used to record the height data

for the experiments in this thesis. The work described here constitutes a consid-

erable part of the effort that went into producing this thesis, and so it has been

included here. The existing documentation for the API which was supplied with

the equipment is incredibly sparse and written in very poor English. We hope

that this appendix will give some pointers on how the API has been used.

Since its inception, the software has been used frequently in the laboratory at

DAMTP. Over the previous 2−3 years, the software and the associated MATLAB

utilities have been used by at least two Ph.D. students, two postdoctoral research

associates and a number of undergraduates as part of summer research projects.

Motivation

The laser triangulator is a high bandwidth device capable of reading 256,000

points of data per second at double precision sustainably. However, the software
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supplied with it was not capable of operating the device at full capacity. The

choice of data storage was to output each profile (up to 1000 points) in a separate

Excel spreadsheet and, as a result, the data could not be written to the hard

drive at the designed speed. It was also very cumbersome for processing data.

Along with this, there was no facility to automatically rename files if a file of the

same name already existed, which made the probability of data loss high and the

process of running experiments consecutively without wasting time very difficult.

This was a particularly important problem when working with the recirculating

chute, as the particles degraded the longer the machine was kept on. Finally,

the existing software was not capable of counting pulses from an external source,

a feature which was needed for the synchronization with the video used for the

particle velocities.

All these problems made it evident that custom software was required in order

to make time critical experiments possible

Implementation

In order to ensure that the maximum bandwidth of the sensor was used, we chose

to transmit the data in container mode, which is an asynchronous method of data

transfer. A container is a data structure which contains multiple profiles. The

scanner waits until the container is full and then transfers the whole container

to the PC. As latency is introduced for each chunk of data being transferred,

and the amount of latency is essentially fixed and not dependent on the size

of the container, transferring larger blocks of data at a time keeps latency to a

minimum. For example, if the laser is recording 1000 profiles per second and a

container contains 1024 profiles, approximately 1 container will be received per

second, and the latency of ≈ 5ms will only be incurred every time a container

arrives, thus reducing the response time by a factor of 1000 for the 1000 profiles

transferred. We choose the number of containers, or the container height, such

that the 128MB buffer inside the scanner is as full as possible. In practice,

maximum transfer rates can be achieved with a much smaller height.

The code is written in C++ and is event driven. Loosely, we set a call back

function (NewContainer) that is executed when the container arrives. This strips
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out the redundant data from the profiles and writes it to disk. The computer

then waits until an event is set. We set the event when the required number of

profiles have been received, or when the user presses Ctrl-C.

The set up of the laser scanner is done by writing a hex code to the profile

rearrangement register (using the SetFeature function). The hexadecimal code

is generated from the input arguments supplied by the user, which are discussed

in the next section.

File Format

The output file format is subject to the naming convention given in appendix A.

The file extension is .lt03, which is also contained within the header and can be

read by the MATLAB function ls read (which also reads older lt01 and lt02

files) or ls read lt03. The file handling utilities within the program automati-

cally look for files with the current date in the name. The program increments

the experiment number by one, until it finds a number for which there is no file

of that name. In this way, no data will be re-written unless the user explicitly

deletes the file first.

The header takes the following format

Name Type Size

File type char 4

Averaged data char 4

Note Size int 1

Note char Note Size

Header size int 1

Rate int 1

Resolution int 1

Shutter time int 1

Idle time int 1

Measuring Area int 1

One field of note is the averaged data field which specifies whether the profile

data have been written straight to the file or averaged first.
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For non-averaged files the data are written as 16-bit integers. If we define the

resolution (i.e. the number of data points) of the profile as r, then each profile

contains 3r such integers. The first r integers contain the integer height data zi,

and can be converted to the real height data z in millimeters by

z = 0.005(zi − 32768) + 250. (C.1)

The next r integers give the x data, which can similarly be written as

x = 0.005(xi − 32768). (C.2)

The last 8 integers in the profile contain time stamp information. The function

for extracting this information can be found in ls read.

For averaged files, the scheme is slightly different. The position data is written

as single precision floats (only the z coordinate) and the time information is

extracted in the same way as before.

Modes of operation

Automation

There are three modes which control the time for which profiles are collected.

They are controlled by the -am command switch or the automatic: option in the

settings file.

automatic: 0

This value of the automatic parameter starts recording as soon as the program

is executed and stops after (approximately) the number of profiles that the user

has requested, using the numberofprofiles: or -np options. A value of 0 for

the number of profiles will record until the user aborts the program.
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automatic: 1

This mode considers externally generated pulses that are inputted using the syn-

chron port on the laser scanner. The program waits until incoming pulses are

received and then starts recording. When the pulses stop, the program keeps on

recording until the number of seconds specified in the autosecs options autosecs:

or -aus has expired. The program then increments the file name and starts record-

ing in the new file when the pulses restart. Note: if pulses occur as the program

is waiting for the autosecs interval to expire, then the data will be recorded until

no more pulses are recieved and the interval counter will start again from 0, i.e.

autosecs seconds must expire with no pulses in order for a new file to be opened.

This mode is recommended for collecting multiple sets of data when using the

PIV system.

automatic: 2

A value of 2 for the automatic parameter simply records for the duration that the

pulses exist, and exits when they have stopped.

Other Switches

Averaged mode

If the option average: or -ap is set then only the averaged data is written to the

file. By default, all of the data is written. The points between averagestart:

(-as) and averageend: (-ae) are included in the average. If the average of the

whole profile is desired, then these can both be set to −1.

Shutter times

There are two options that control the exposure of the sensor. The exposure that

gives the best result depends on the material and the lighting conditions. The

program displays the percentage of valid points that it can see as it runs, and

so the user should adjust the parameters accordingly. The first parameter is the

shutterauto: (-sa). If this is set to a positive value, then the laser triangulator

selects the shutter speed to receive the most number of valid points. For manual
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control, this parameter must be set to 0 and the exposure time can be set using

the shuttertime: (-st) parameter, which is measured in units of 10−5 s.

Measuring area

The rate at which the laser can record data is limited by the area over which it

has to scan. Generally speaking, the smaller the area, the higher the bandwidth.

This is set using the measurearea: (-ma) property. It can take the values shown

in figure C.1. If a significant number of points is being reported as invalid, this

field should be altered appropriately. It is suggested that, before performing

an experiment, the user estimates the maxima and minima of distances to be

measured to ensure that valid data is recorded for the duration.

Other switches

The fields for name: (-nm), suffix: (-sf) seriesnumber: (-sn) and experimentnumber: (-nm)

should be self explanatory, and are used in the naming convention described in

the previous appendix.

The fields rate: (-rate) and resolution: (-res) specify the rate and resolu-

tion of the profiles. The rate is any positive integer < 1000 and the resolution

must be a power of 2 such that it is greater than 64 and less than 1024.

A note can be specified using the note: (-no) option for small amounts of

important information to be stored.

Finally, a facility was added, whereby an LED attached to pins 4 and 5 of an

RS232 serial port turns on when data is being recorded. This is set using the

option ledcom: (-led).

A default settings file settings.txt is shown in table C.1 to illustrate the

format required. By default, the program will look for this file, but other files can

be specified using the input file command switch -if.

A summary of available parameters can be seen in table C.3, and their command

line alternatives can be seen in table C.4.
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Figure C.1: Measuring fields’ codes for the laser.
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name: exciting_experiment

suffix: interesting_parameter

seriesnumber: 1

experimentnumber: 1

rate: 25

resolution: 1024

shuttertime: 500

average: 0

averagestart: -1

averageend: -1

containerheight: 64

numberofprofiles: 0

measurearea: 0

automatic: 0

autosecs: 1

ledcom: 0

note: ‘‘Details that you would forget otherwise’’

Table C.1: Default settings.txt
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Table C.2: Parameter description and units

Parameter range description
name < 255 chars Experiment Name
suffix < 255 chars Measurement Type
seriesnumber 00 - 99 Experiment Series Number
experimentnumber 00 - 99 Subexperiment Number
rate < 1000 Number of profiles per sec-

ond
resolution 2n: 6 ≤ n ≤ 10 Number of points per profile
shuttertime depends on rate Exposure time
average 1 or 0 Whether or not to average

each profile
averagestart 0 - averageend Point from which to average

from
averageend averagestart - resolution Point from which to average

to
containerheight ? Number of profiles for laser

to transmit to computer
in packet (leave to default
value)

numberofprofiles ≥ 0 How many profiles to cap-
ture (0 = ∞)

measurearea 0 - 95 Which area to measure -
consult manual

automatic 0,1,2 See below
autosecs 0−∞ Time after signals stop to

start capturing to another
file and wait for another
trigger

ledcom 0 - 1 Turn on an LED connected
to COM2 when autosecs
have expired

note ≤ 255 Note to put in header

Table C.3: A reference table for laser scanner parameters.
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Switch Parameter name
-nm name
-sf suffix
-if input file (defaults to settings.txt)
-sn seriesnumber
-en experimentnumber
-rate rate
-res resolution
-st shuttertime
-sa shutter auto
-ap average
-as average start
-ae average end
-ch containerheight
-np numberofprofiles
-no note
-ma measurearea
-am automatic
-aus autosecs
-led led com
-h print help

Table C.4: Command line options for the laser scanner.
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Distance Ratio Method

In this appendix we present a brief summary of a method of segmenting grains in

an image. As it was discovered that this method was not computationally efficient,

it was discarded in favour of other methods. We examine the ratio of distance

around the perimeter and the Euclidean distance between two points. We define

the edge pixels of a cluster of grains as (xi, yi), where 1 ≤ i ≤ N and N is the

perimeter length. We assume an 8-connected definition of an edge (i.e. include

diagonal pixels) but the results remain qualitatively unchanged if a 4-connected

definition is taken. The coordinates are ordered such that |xi − xi+1| ≤
√
2 and

similarly for y.

We define

Qi,j =
k∑

m=i

√
(xm+1 − xm)2 + (ym+1 − ym)2, (D.1)

where all suffices are taken moduloN . And k is defined so that it satisfies k ≡ j−1

(mod N) and therefore i < k < i + N . Then, the perimetric distance is defined

as

Pi,j = min{Qi,j , Qj,i}. (D.2)
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Figure D.1: Points on boundary of clump of grains that are under the threshold. Red
shows the point with the minimum value i.e. the point that the cluster will be split at.
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Figure D.2: Ratio of distance to distance around perimeter of the pixel on the split
point to the nth pixel along the perimeter. The lowest value denotes the point at which
to split the pixel. Dashed line indicates the value below which we choose to split the
particle.
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This can be interpreted as the shortest distance between the ith and jth pixel

around the perimeter. Then, using the conventional distance between the two

points

Di,j =
√
(xi − xj)2 − (yi − yj)2, (D.3)

we construct the ratio

αi,j =
Di,j

Pi,j

. (D.4)

This ratio α is bounded above by 1 and below by 0. Low values are attained

when there is a thin part of the shape with bulbous regions on either side. If a

pair of points gives a particularly low value for this ratio, we split the shape in

two between these points.

In order to do this sucessfully a threshold must be chosen such that if the

minimum of α is below this threshold, we split the particles there. We see that

for a circle, the minimum value attained by α is 1/π ≈ 0.31 hence choosing a

number smaller than this will allow for some non circularity. Trial and error on a

batch of images revealed that 0.2 produced a good level of segmentation for small

clusters. A sample cluster and its split point can be seen in figure D.1.

Once a split point has been found for a cluster of grains, we then follow the

same procedure on each of the new clusters. This process is then carried out until

we reach a point where all clusters have no eligible candidate points on which to

split the grains.

This approach to the problem works well if the clusters of particles have no more

than around 10 particles in them. However, as the pictures usually have around

500 grains in them, there are clusters that have significantly more and therefore

the recursive nature of the algorithm means that the computation time grows

exponentially with the maximum cluster size. On a typical image the algorithm

takes a prohibitively long time hence we elect to use one of the other techniques

described in chapter 2.
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